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1 Variable aléatoire

On considère une expérience aléatoire d’univers Ω. Une variable aléatoire 𝑋 prenant les valeurs 𝑥1, 𝑥2, . . . , 𝑥𝑛 est définie par
la donnée des probabilités:

𝑝1 = P(𝑋 = 𝑥1) ; 𝑝2 = P(𝑋 = 𝑥2) ; . . . ; 𝑝𝑛 = P(𝑋 = 𝑥𝑛)

qui vérifient les relations:

pour tout entier 𝑖 tel que 1 ⩽ 𝑖 ⩽ 𝑛 , 0 ⩽ 𝑝𝑖 ⩽ 1 et
𝑛∑︁
𝑖=1

𝑝𝑖 = 1

On définit alors la loi de probabilité de 𝑋 sous la forme d’un tableau :

𝑥𝑖 𝑥1 𝑥2 𝑥3 . . . 𝑥𝑛

P(𝑋 = 𝑥𝑖) 𝑝1 𝑝2 𝑝3 . . . 𝑝𝑛

Si les valeurs possibles de 𝑋 sont réparties de façon continue sur un intervalle fini ou infini, 𝑋 est appelée variable aléatoire
continue.

Une telle variable est définie lorsque l’on connaı̂t la probabilité pour que 𝑋 prenne une valeur dans tout intervalle du type
[𝑎; 𝑏].

1.1 Notion de variable aléatoire continue

Définition :
Une variable aléatoire continue est une variable qui prend ses valeurs dans un intervalle de R.

Exemple :
Les variables aléatoires suivantes ne sont pas discrètes :

• Variable 𝑇 correspondant à la taille d’un élève,
• Variable 𝐿 correspondant à longueur d’un train,
• Variable 𝐴 correspondant au temps d’attente à une caisse . . .

1.2 Fonction de répartition

Définition :
Soit 𝑋 une variable aléatoire, on appelle fonction de répartition de 𝑋 la fonction définie sur R par :

𝐹 (𝑥) = P(𝑋 ≤ 𝑥)

Propriété :
La définition nous permet d’écrire :

• 𝐹 (𝑥) = P (𝑋 ∈ ] − ∞ ; 𝑥 ]).
• P(𝑎 ≤ 𝑋 ≤ 𝑏) = P(𝑋 ≤ 𝑏) − P(𝑋 ≤ 𝑎) = 𝐹 (𝑏) − 𝐹 (𝑎).
• P(𝑋 > 𝑏) = P(𝑋 ≤ 𝑏) = 1 − 𝐹 (𝑏).
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Démonstration :
Le premier et le troisième point sont immédiats par propriétés fondamentales d’une mesure de probabilité P.
Pour le deuxième point on a :

P(𝑎 ≤ 𝑋 ≤ 𝑏) = P((𝑋 ≥ 𝑎) ∩ (𝑋 ≤ 𝑏))
= P(𝑋 ≥ 𝑎)︸     ︷︷     ︸

1−𝐹 (𝑎)

+ P(𝑋 ≤ 𝑏)︸     ︷︷     ︸
𝐹 (𝑏)

− P((𝑋 ≥ 𝑎) ∪ (𝑋 ≤ 𝑏))︸                       ︷︷                       ︸
=1

= 𝐹 (𝑏) − 𝐹 (𝑎)

(1)

•! Remarque

On admet que pour une variable aléatoire continue, pour tout 𝑎 ∈ R :

P(𝑋 = 𝑎) = 0

On a donc :

• P(𝑎 < 𝑋 < 𝑏) = P(𝑎 < 𝑋 ≤ 𝑏) = P(𝑎 ≤ 𝑋 < 𝑏) = P(𝑎 ≤ 𝑋 ≤ 𝑏),

• P(𝑎 < 𝑋) = P(𝑎 ≤ 𝑋),

• P(𝑋 > 𝑏) = P(𝑋 ≥ 𝑏).

Propriété :
La fonction de répartition 𝐹 d’une variable aléatoire continue 𝑋 a les propriétés suivantes :

• 𝐹 est une fonction croissante, définie et continue sur R.

• Pour tout 𝑥 ∈ R, 0 ≤ 𝐹 (𝑥) ≤ 1.

• lim
𝑥→−∞

𝐹 (𝑥) = 0 et lim
𝑥→+∞

𝐹 (𝑥) = 1.

Démonstration :

• Le premier point se montre aisément en introduisant dans la prochaine sous-partie la notion de fonction de densité de
probabilité.

• Le deuxième point vient directement du fait qu’une probabilité est comprise entre 0 et 1.
• Le troisième point se montre également via les fonctions densité de probabilités.

1.3 Densité et loi de probabilité

Définition :
Dans le cas où 𝐹 est dérivable, la fonction 𝑓 dérivée de 𝐹 est appelée densité de probabilité de 𝑋 et pour tout 𝑥 de R :

𝐹′ (𝑥) = 𝑓 (𝑥)
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•! Remarque

Une variable aléatoire continue 𝑋 est donc définie par une fonction 𝑓 : la densité de probabilité.

Propriété :
Soit 𝑋 une variable aléatoire de densité 𝑓 , on a :

P(𝑋 ≤ 𝑡) =
∫ 𝑡

−∞
𝑓 (𝑥)𝑑𝑥

Démonstration :
Par définition, la fonction 𝐹 est dérivable de dérivée 𝑓 . On a donc que 𝐹 est une primitive de 𝑓 qui est une fonction continue.
On conclut par théorème fondamental de l’analyse.

Cette propriété signifie donc que le calcul de probabilité d’une variable aléatoire continue revient à calculer la valeur d’une
intégrale. On en déduit par ailleurs les conséquences suivantes :

• 𝐹 étant une fonction croissante, 𝑓 est positive.

• P(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹 (𝑏) − 𝐹 (𝑎) =
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

𝑎 𝑏

• P(𝑋 ≤ 𝑎) = 𝐹 (𝑎) =
∫ 𝑎

−∞
𝑓 (𝑡) 𝑑𝑡.

𝑎

•
∫ +∞

−∞
𝑓 (𝑥) 𝑑𝑥 = 1.

Graphiquement, l’aire entre la courbe de 𝑓 , qui est une fonction positive, et l’axe des abscisses vaut 1.

Exemple :
Voici quelques exemples de densités de probabilités ainsi que leurs courbes représentatives dans un repère orthonormal :

• 𝑓1 (𝑥) =


0 si 𝑥 < 0
1 si 0 ≤ 𝑥 ≤ 1
0 si 𝑥 > 1

−1 0

1

1
[ ]

• •
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• 𝑓2 (𝑥) =


0 si 𝑥 ≤ −1
𝑥 + 1 si −1 < 𝑥 ≤ 0
−𝑥 + 1 si 0 < 𝑥 ≤ 1
0 si 𝑥 > 1

−2 −1

1

• 𝑓3 (𝑥) =
{

0 si 𝑥 < 0
2𝑒−2𝑥 si 𝑥 ≥ 0

−1 0
[

•

1

2

1.4 Espérance et variance

De même que pour les variables aléatoires discrètes, on peut définir la notion d’espérance et de variance d’une variable aléatoire
continue. La détermination se fait également par calcul d’intégrales.

Définition :
Soit 𝑋 une variable aléatoire continue et 𝑓 sa densité.

• On appelle espérance de 𝑋 le réel, noté E(𝑋), défini par la relation

E(𝑋) =
∫ +∞

−∞
𝑥 𝑓 (𝑥) 𝑑𝑥.

• On appelle variance de 𝑋 le réel, noté V(𝑋), qui, s’il existe, est défini par la relation

V(𝑋) =
∫ +∞

−∞
[ 𝑥 − E(𝑋) ]2 𝑓 (𝑥) 𝑑𝑥.

• On appelle écart-type de 𝑋 le réel, noté 𝜎𝑋, défini par la relation

𝜎(𝑋) =
√︁
V(𝑋).

Exemple :
On peut s’amuser à calculer l’espérance, la variance et l’écart-type pour la fonction 𝑓2 définie dans l’exemple précédent :

• On a l’espérance :

E(𝑋) =
∫ +∞

−∞
𝑥 𝑓2 (𝑥) 𝑑𝑥 =

∫ −1

−∞
𝑥 × 0 𝑑𝑥 +

∫ 0

−1
𝑥(𝑥 + 1) 𝑑𝑥 +

∫ 1

0
𝑥(−𝑥 + 1) 𝑑𝑥 +

∫ +∞

1
𝑥 × 0 𝑑𝑥

=

∫ 0

−1
(𝑥2 + 𝑥) 𝑑𝑥 +

∫ 1

0
(−𝑥2 + 𝑥) 𝑑𝑥

=

[
𝑥3

3
+ 𝑥2

2

]0

−1
+
[
−𝑥3

3
+ 𝑥2

2

]1

0

= 0 −
(
−1

3
+ 1

2

)
+
(
−1

3
+ 1

2

)
− 0

= 0

(2)
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• On a la variance :

V(𝑋) =
∫ +∞

−∞
[ 𝑥 − E(𝑋) ]2 𝑓 (𝑥) 𝑑𝑥

=

∫ 0

−1
𝑥2 (𝑥 + 1) 𝑑𝑥 +

∫ 1

0
𝑥2 (−𝑥 + 1) 𝑑𝑥

=

∫ 0

−1
(𝑥3 + 𝑥2)𝑑𝑥 +

∫ 1

0
(−𝑥3 + 𝑥2)𝑑𝑥

=

[
𝑥4

4
+ 𝑥3

3

]0

−1
+
[
−𝑥4

4
+ 𝑥3

3

]1

0

= 0 −
(

1
4
− 1

3

)
+
(
−1

4
+ 1

3

)
− 0

=
1
6

(3)

• On a l’écart type :

𝜎𝑋 =
√︁
V(𝑋) = 1

√
6

Propriété :
Soit 𝑋 une variable aléatoire continue admettant une espérance et une variance, alors pour tous 𝑎, 𝑏 ∈ R :

• E(𝑎𝑋 + 𝑏) = 𝑎E(𝑋) + 𝑏.

• V(𝑎𝑋 + 𝑏) = 𝑎2V(𝑋).

• 𝜎(𝑎𝑋 + 𝑏) = |𝑎 |𝜎(𝑋).

• E(𝑋 + 𝑌 ) = E(𝑋) + E(𝑌 ).

• E(𝑋 − 𝑌 ) = E(𝑋) − E(𝑌 ).

Si de plus 𝑋 et 𝑌 sont indépendantes,

• V(𝑋 + 𝑌 ) = V(𝑋) + V(𝑌 ). • V(𝑋 − 𝑌 ) = V(𝑋) + V(𝑌 ).

Démonstration :
On admettra ici ces propriétés. En effet, la démonstration de la linéarité de l’espérance fait appel à des notions très largement
hors programmes.

2 Lois fondamentales

2.1 Loi exponentielle

2.1.1 Définition

Définition :
Soit 𝜆 ∈]0,+∞[, on dit qu’une variable aléatoire 𝑋 suit une loi exponentielle de paramètre 𝜆 si sa densité de probabilité
est la fonction 𝑓 définie sur [0,+∞[ par :

𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥

On notera 𝑋 ∼ E(𝜆).
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Exercice :
Une standardiste vient de prendre son travail et attend son premier appel. Nous admettrons que le temps d’attente, exprimé en

secondes, du premier appel suit une loi exponentielle de paramètre
1

10
.

Donner la probabilité que la standardiste attende :
1. moins de 10 secondes,
2. plus de 30 secondes,
3. entre 20 et 30 secondes.

2.1.2 Espérance et variance

Propriété :
Soit 𝜆 ∈]0,+∞[ et 𝑋 ∼ E(𝜆), on a :

E(𝑋) = 1
𝜆

et V(𝑋) = 1
𝜆2

Démonstration :

• On a pour l’espérance :

E(𝑋) =
∫ +∞

−∞
𝑥 𝑓 (𝑥)𝑑𝑥

=

∫ +∞

0
𝜆𝑥𝑒−𝜆𝑥𝑑𝑥

=
[
−𝑥𝑒−𝜆𝑥

]+∞
0 +

∫ +∞

0
𝑒−𝜆𝑥𝑑𝑥

=

[
𝑒−𝜆𝑥

−𝜆

]+∞
0

=
1
𝜆

(4)

• On a pour la variance :

V(𝑋) = E(𝑋2) − E(𝑋)2

=

∫ +∞

−∞
𝑥2 𝑓 (𝑥)𝑑𝑥 − 1

𝜆2

=

∫ +∞

0
𝜆𝑥2𝑒−𝜆𝑥𝑑𝑥 − 1

𝜆2

=
[
−𝑥2𝑒−𝜆𝑥

]+∞
0 +

∫ +∞

0
2𝑥𝑒−𝜆𝑥𝑑𝑥 − 1

𝜆2

=

[
2𝑥𝑒−𝜆𝑥

−𝜆

]+∞
0

+
∫ +∞

0

2𝑒−𝜆𝑥

𝜆
𝑑𝑥 − 1

𝜆2

=

[
2𝑒−𝜆𝑥

𝜆2

]+∞
0

− 1
𝜆2

=
1
𝜆2

(5)
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Exercice :
On considère une variable aléatoire suivant une loi exponentielle de paramètre 𝜆 et d’espérance 0, 25.
Déterminer la valeur de 𝜆.

2.2 Loi normale

2.2.1 Définition

Cette loi est celle qui rend compte de diverses mesures d’une grandeur donnée, opérées à diverses reprises, chaque mesure
étant sujette à des erreurs.

La loi normale (ou de Laplace-Gauss, appelée ≪ normale ≫ par Pearson en 1893) est la loi de certains phénomènes continus
qui fluctuent autour d’une valeur moyenne 𝜇, de manière aléatoire, résultante d’un grand nombre de causes indépendantes dont
les effets s’ajoutent sans que l’un d’eux soient dominant :

par exemple la taille d’un individu en cm, influencée par le sexe, la nourriture, l’environnement, l’hérédité, le lieu géographique
. . .

Définition :
Soit 𝑚 ∈ R et 𝜎 > 0, on dit qu’une variable aléatoire 𝑋 suit une loi normale de paramètres 𝑚 et 𝜎 si sa densité de
probabilité est la fonction 𝑓 définie sur R par :

𝑓 (𝑥) = 1
𝜎
√

2𝜋
𝑒
−
(𝑥 − 𝑚)2

2𝜎2

On notera 𝑋 ∼ N(𝑚;𝜎).

Exemple :
Voici des exemples de courbes pour quelques valeurs de 𝑚 et 𝜎 :

1

2

−3 −2 −1 0 1 2 3

𝑚 = −1 et 𝜎 = 0, 2

1

2

−3 −2 −1 0 1 2 3

𝑚 = 0 et 𝜎 = 0, 5

1

2

−3 −2 −1 0 1 2 3

𝑚 = 1 et 𝜎 = 0, 8

1

2

−3 −2 −1 0 1 2 3

𝑚 = 2 et 𝜎 = 1, 1
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2.2.2 Espérance et écart type

Propriété :
Soit 𝑚 ∈ R et 𝜎 > 0 et 𝑋 ∼ N(𝑚;𝜎), on a :

E(𝑋) = 𝑚 𝜎(𝑋) = 𝜎 V(𝑋) = 𝜎2

Ainsi les paramètres d’une loi normale sont en fait son espérance mathématique et son écart-type.

Démonstration :
On se contentera de montrer le résultat pour l’espérance.

E(𝑋) =
∫ +∞

−∞
𝑥 𝑓 (𝑥)𝑑𝑥

=
1

𝜎
√

2𝜋

∫ +∞

−∞
𝑥𝑒

− (𝑥−𝑚)2
2𝜎2 𝑑𝑥

=
1

𝜎
√

2𝜋

∫ +∞

−∞
(
√

2𝜎𝑢 + 𝑚)𝑒−𝑢2 ×
√

2𝜎𝑑𝑢

=

√︂
2
𝜋
𝜎

∫ +∞

−∞
𝑢𝑒−𝑢

2
𝑑𝑢 + 𝑚

√
𝜋

∫ +∞

−∞
𝑒−𝑢

2
𝑑𝑢

=

√︂
2
𝜋
𝜎

[
𝑒−𝑢

2

−2

]+∞
−∞

+ 𝑚
√
𝜋
×
√
𝜋

= 𝑚

(6)

On a donc bien le résultat.
La démonstration est similaire pour la variance, elle est simplement plus fastidieuse et laissée au lecteur. Tout comme la
preuve effectuée pour une variable aléatoire suivant une loi exponentielle, il s’agit de s’appuyer sur la formule de König puis
la théorème de transfert.

Exemple :
Dans l’exemple précédent, on peut observer :

• que la courbe admet comme axe de symétrie la droite d’équation 𝑥 = 𝑚,
• que le maximum de la courbe est atteint en 𝑚, espérance de la variable 𝑋 (ce maximum valant 1

𝜎
√

2𝜋
),

• et que plus 𝜎 est grand, plus la courbe ”s’étale” autour de la moyenne, en accord avec la signification de l’écart-type.

On remarque par ailleurs que si 𝑋 suit la loi normale de paramètres 𝑚 et 𝜎, alors :

• 𝑃(𝑚 − 𝜎 ≤ 𝑋 ≤ 𝑚 + 𝜎) ≈ 0, 68.

• 𝑃(𝑚 − 2𝜎 ≤ 𝑋 ≤ 𝑚 + 2𝜎) ≈ 0, 95.

Ceci signifie donc que :

• ∼ 68% des valeurs sont dans [𝑚 − 𝜎 ; 𝑚 + 𝜎]

• ∼ 95% des valeurs sont dans [𝑚 − 2𝜎 ; 𝑚 + 2𝜎]

• ∼ 99, 7% des valeurs sont dans [𝑚 − 3𝜎 ; 𝑚 + 3𝜎]
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On a donc l’interprétation graphique suivante :

𝑚 − 3𝜎 𝑚 + 3𝜎𝑚 − 2𝜎 𝑚 + 2𝜎𝑚 − 𝜎 𝑚 + 𝜎𝑚

34, 1%34, 1%

14%14% 2%2%

2.2.3 Loi normale centrée réduite

Définition :
La variable aléatoire 𝑋 qui suit la loi normale de paramètres 𝑚 = 0 et 𝜎 = 1 est dite variable aléatoire centrée réduite.
Sa densité de probabilité est définie sur R par :

𝑓 (𝑥) = 1
√

2𝜋
𝑒−

1
2 𝑥

2

La fonction de répartition de la loi normale réduite se note généralement Π.
Ses valeurs peuvent se lire dans une table ou sur une calculatrice.

La table ne donne que les valeurs de P(𝑋 ⩽ 𝑥) = Π(𝑥) pour 𝑥 positif. Pour les autres calculs de probabilité, on procède comme
ci-dessous, pour 𝑎 > 0 et 𝑏 > 0.

P(𝑋 ≤ 𝑎) = Π(𝑎)

−3 −2 −1 0 1 2𝑎
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P(𝑋 ≥ 𝑎) = 1 − P(𝑋 < 𝑎)
= 1 − P(𝑋 ≤ 𝑎)
= 1 − Π(𝑎)

−3 −2 −1 0 1 2𝑎

Π(−𝑎) = P(𝑋 ≤ −𝑎)
= P(𝑋 ≥ 𝑎)
= 1 − P(𝑋 < 𝑎)
= 1 − Π(𝑎)

−3 −2 −1 0 1 2−𝑎

P(𝑎 ≤ 𝑋 ≤ 𝑏) = P(𝑋 ≤ 𝑏) − P(𝑋 < 𝑎)
= P(𝑋 ≤ 𝑏) − P(𝑋 ≤ 𝑎)
= Π(𝑏) − Π(𝑎)

−3 −2 −1 0 1 2𝑎 𝑏

P(−𝑎 ≤ 𝑋 ≤ 𝑎) = Π(𝑎) − Π(−𝑎)
= Π(𝑎) − [1 − Π(𝑎)]
= 2Π(𝑎) − 1

−3 −2 −1 0 1 2−𝑎 𝑎

2.2.4 Approximation d’une loi binomiale par une loi Normale

Propriété :
Pour 𝑛 suffisamment grand, on peut remplacer la probabilité associées à la loi binomiale B(𝑛; 𝑝) par celle de la loi
normale N(𝑚;𝜎) avec 𝑚 = 𝑛𝑝 et 𝜎 =

√
𝑛𝑝𝑞.

Démonstration :
Cette démonstration est très largement hors programme, le théorème central limite se démontre entre autre via le théorème de
Lévy, on a donc une convergence en loi de la loi binomiale vers la loi normale.

En pratique, on approche les probabilités de la loi binomiale par celles de la loi normale lorsque :

𝑛 ⩾ 50 , 𝑛𝑝 ⩾ 5 et 𝑛𝑞 ⩾ 5

Exemple :
On estime que la probabilité pour qu’une graine ait perdu son pouvoir germinatif après 3 ans de conservation est de 70%. Sur
un échantillon de 100 graines conservées depuis 3 ans, quelle est la probabilité pour que moins de 25 germent ?

La probabilité pour qu’une graine germe est 𝑝 = 0, 3.
On suppose que l’échantillon est prélevé aléatoirement, et en particulier que le pouvoir germinatif de chaque graine est
indépendant des autres graines.

On note 𝑋 la variable aléatoire égale au nombre de graines qui germent parmi les 100.
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𝑋 suit alors une loi binomiale B(100; 0, 3), et la probabilité recherchée est:

P(𝑋 < 25) = P(𝑋 ⩽ 24) = P(𝑋 = 0) + P(𝑋 = 1) + P(𝑋 = 2) + · · · + P(𝑋 = 23) + P(𝑋 = 24)

=

24∑︁
𝑘=0

P(𝑋 = 𝑘) avec P(𝑋 = 𝑘) =
(
100
𝑘

)
𝑝𝑘 (1 − 𝑝)100−𝑘 (7)

Le calcul exact est facile à effectuer mais (très) fastidieux.
On peut alors, soit utiliser un logiciel de calcul (ou le programmer dans un langage quelconque), qui nous donne :

P(𝑋 ⩽ 24) ≃ 0, 114

soit en calculer une valeur approchée en utilisant les valeurs tabulées de la loi normale.

On peut ici utiliser la loi normale car les paramètres 𝑛 = 100, 𝑛𝑝 = 30 et 𝑛𝑞 = 𝑛(1 − 𝑝) = 70 sont assez grands.
On approxime alors les résultats à l’aide de la loi normale N(𝑚;𝜎), avec les paramètres:

𝑚 = 𝑛𝑝 = 30 et 𝜎 =
√
𝑛𝑝𝑞 =

√︁
100 × 0, 3 × 0, 7 ≃ 4, 5826

On remplace ainsi la variable aléatoire discrète 𝑋 ∼ B(𝑛; 𝑝) par la variable aléatoire continue 𝑋𝑐 ∼ N(𝑚;𝜎).
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