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1 Matrices

1.1 Définitions

Définition :
Soit 𝑛 et 𝑝 deux entiers naturels non nuls.
Une matrice 𝑛 × 𝑝 est un tableau à 𝑛 lignes et 𝑝 colonnes, que l’on note

𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑝
𝑎21 𝑎22 · · · 𝑎2𝑝
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑝

ª®®®®¬
ou 𝐴 =

(
𝑎𝑖 𝑗

)
1≤𝑖≤𝑛;1≤ 𝑗≤𝑝

Le premier indice 𝑖 désigne la ligne, le deuxième 𝑗 la colonne.

Exemple :

• La matrice 𝐴 =

(
1 17 0
1
2
√

5 5

)
est une matrice 2 × 3 à deux lignes et trois colonnes.

• 𝑎23 est le coefficient situé à l’intersection de la 2𝑖𝑒̀𝑚𝑒 ligne et de la 3𝑖𝑒̀𝑚𝑒 colonne, il vaut 5.

Définition :
Soit 𝐴 une matrice 𝑛 × 𝑝.

• Si 𝑝 = 1, 𝐴 est une matrice colonne : 𝐴 =

©­­­­«
𝑎1
𝑎2
...

𝑎𝑛

ª®®®®¬
• Si 𝑛 = 1, 𝐴 est une matrice ligne : 𝐴 =

(
𝑎1 𝑎2 · · · 𝑎𝑝

)
• Si 𝑛 = 𝑝, 𝐴 est une matrice carrée. Les coefficients 𝑎𝑖𝑖 sont appelés coefficients diagonaux :

𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

ª®®®®¬
• La matrice 𝑛 × 𝑝 dont tous les coefficients sont nuls s’appelle la matrice nulle.

Exemple :

• La matrice 𝑀 =

(
2
−3

)
est une matrice colonne.

• La matrice 𝑁 =
(
−1 2 7 5

)
est une matrice ligne.

• La matrice 𝑃 =
©­«

2 21 −3
1 −1 6
−4 0 𝜋

ª®¬ est une matrice carrée d’orde 3.

• La matrice 𝑂 =

(
0 0 0
0 0 0

)
est une matrice nulle.
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1.2 Matrices carrées particulières

Soit 𝐴 =
(
𝑎𝑖 𝑗

)
une matrice carrée de taille 𝑛.

• Si 𝑎𝑖 𝑗 = 0 dès que 𝑖 > 𝑗 , 𝐴 est appelée matrice triangulaire supérieure :

𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛
0 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...

0 0 · · · 𝑎𝑛𝑛

ª®®®®¬
• Si 𝑎𝑖 𝑗 = 0 dès que 𝑖 < 𝑗 , 𝐴 est appelée matrice triangulaire inférieure :

𝐴 =

©­­­­«
𝑎11 0 · · · 0
𝑎21 𝑎22 · · · 0
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑝

ª®®®®¬
• Si 𝑎𝑖 𝑗 = 0 dès que 𝑖 ≠ 𝑗 , 𝐴 est appelée matrice diagonale :

𝐴 =

©­­­­«
𝑎11 0 · · · 0
0 𝑎22 · · · 0
...

...
. . .

...

0 0 · · · 𝑎𝑛𝑛

ª®®®®¬
• Si de plus les termes diagonaux sont tous égaux à 1, elle est appelée matrice unité :

𝐼 =

©­­­­«
1 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1

ª®®®®¬
Exemple :

• Matrice triangulaire supérieure : 𝑇 =
©­«
1 2 3
0 4 0
0 0 6

ª®¬
• Matrice triangulaire inférieure : 𝑉 =

(
1 0
5 6

)

• Matrice diagonale : 𝐷 =

©­­­«
−1 0 0 0
0 5 0 0
0 0 17 0
0 0 0 𝑒

ª®®®¬
Propriété :
Les matrices 𝐴 =

(
𝑎𝑖 𝑗

)
et 𝐵 =

(
𝑏𝑖 𝑗

)
de dimension 𝑛 × 𝑝 sont égales ssi 𝑎𝑖 𝑗 = 𝑏𝑖 𝑗 pour tous 𝑖, 𝑗 .
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2 Opérations sur les matrices

2.1 Multiplication d’une matrice par un scalaire

Propriété :
Si 𝐴 =

(
𝑎𝑖 𝑗

)
et 𝜆 ∈ R, on définit 𝜆𝐴 comme étant la matrice 𝐶 =

(
𝑐𝑖 𝑗

)
telle que :

𝑐𝑖 𝑗 = 𝜆𝑎𝑖 𝑗 pour tous 𝑖, 𝑗

Il s’agit donc simplement de multiplier chaque terme de la matrice.

Exemple :

On considère la matrice 𝐴 =

( 1
2 1
0 − 3

4

)
, on a alors :

−2𝐴 =

(
−2 × 1

2 −2 × 1
−2 × 0 −2 × − 3

4

)
=

(
−1 −2
0 3

2

)

2.2 Somme de deux matrices de même taille

Propriété :
Si 𝐴 =

(
𝑎𝑖 𝑗

)
et 𝐵 =

(
𝑏𝑖 𝑗

)
sont deux matrices 𝑛 × 𝑝, on définit la somme 𝐴 + 𝐵 comme étant la matrice 𝐶 =

(
𝑐𝑖 𝑗

)
de

taille 𝑛 × 𝑝 telle que :
𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗 pour tous 𝑖, 𝑗

Il s’agit donc simplement d’additionner les termes de même emplacement de chaque matrice.

Exemple :
Somme de deux matrices 2 × 3 :(

1 0 −1
2 1 4

)
+

(
0 −1 −2
−3 1 5

)
=

(
1 + 0 0 − 1 −1 − 2
2 − 3 1 − 1 4 + 5

)
=

(
1 −1 −3
−1 2 9

)

2.3 Multiplication de deux matrices

Propriété :
Soit 𝐴 =

(
𝑎𝑖 𝑗

)
de taille 𝑛 × 𝑝 et 𝐵 =

(
𝑏 𝑗𝑘

)
de taille 𝑝 × 𝑞, on définit le produit 𝐴 × 𝐵 (aussi noté 𝐴𝐵) comme étant la

matrice 𝐶 =
(
𝑐𝑖 𝑗

)
définie par :

𝑐𝑖 𝑗 =

𝑝∑︁
𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗 pour 1 ≤ 𝑖 ≤ 𝑛 et 1 ≤ 𝑗 ≤ 𝑞
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•! Remarque

Le produit n’est défini que si le nombre de colonnes de 𝐴 est égal au nombre de lignes de 𝐵.

𝐴
3 × 4

𝐵
4 × 2

OK !
𝐴 × 𝐵
3 × 2

𝐵
4 × 2

𝐴
3 × 4

≠

Dimensions incompatibles
pour la multiplication

Présentation du calcul :

©­­­­­«
0 1 1

2 2 0

−1 3 1

ª®®®®®¬
©­­«

1 2 −1

1 0 3

ª®®¬
©­­«
· 𝑐12 ·

· · ·

ª®®¬
On a donc :

𝑐12 = 1 × 1 + 2 × 2 − 1 × 3 = 2

On obtient donc : (
1 2 −1
1 0 3

)
×

©­­«
0 1 1
2 2 0
−1 3 1

ª®®¬ =

(
5 2 0
−3 10 4

)

2.4 Inverse d’une matrice

Définition :
Une matrice carrée 𝐴 est dite inversible s’il existe une matrice carrée 𝐶 telle que :

𝐴 × 𝐶 = 𝐶 × 𝐴 = 𝐼

où 𝐼 est la matrice identité.
𝐶 est alors unique et est notée 𝐶 = 𝐴−1.

On se contentera en général d’utiliser la calculatrice ou un logiciel de calcul formel pour déterminer la matrice inverse d’une
matrice donnée.
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3 Application à la résolution de systèmes linéaires

Un système de 𝑛 équations linéaires à 𝑛 inconnues est de la forme :

𝑎11𝑥1 + 𝑎12𝑥2 + . . . 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + . . . 𝑎2𝑛𝑥𝑛 = 𝑏2
...

...
...

...
...

...
...

...

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + . . . 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

où les 𝑎𝑖 𝑗 sont les coefficients du système, les 𝑥𝑖 les inconnues et les 𝑏𝑖 les termes constants.

Un tel système peut s’écrire sous forme matricielle :
𝐴𝑋 = 𝐵

avec :

𝐴 =

©­­­­­­­­­«

𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛

ª®®®®®®®®®¬
; 𝑋 =

©­­­­­­­­­«

𝑥1

𝑥2
...

𝑥𝑛

ª®®®®®®®®®¬
; 𝐵 =

©­­­­­­­­­«

𝑏1

𝑏2
...

𝑏𝑛

ª®®®®®®®®®¬
Propriété :
Un système d’équations de type 𝐴𝑋 = 𝐵, où 𝐴 est une matrice carrée connue qui admet une matrice inverse 𝐴−1, 𝐵 une
matrice colonne connue et 𝑋 une matrice colonne d’inconnues peut être résolu par :

𝑋 = 𝐴−1 × 𝐵

Exemple :
On considère le système suivant :

(𝑆) :


6𝑥 + 10𝑦 = 2

12𝑥 + 35𝑦 = 24

On peut réécrire ce système sous forme matricielle 𝐴𝑋 = 𝐵 avec :

𝐴 =
©­­«

6 10

12 35

ª®®¬ ; 𝑋 =
©­­«
𝑥

𝑦

ª®®¬ et 𝐵 =
©­­«

2

24

ª®®¬
Avec un logiciel de calcul formel on obtient :

𝐴−1 =
©­­«

7
18 − 1

9

− 2
15

1
15

ª®®¬
On obtient donc :

𝑋 = 𝐴−1 × 𝐵 =
©­­«

7
18 − 1

9

− 2
15

1
15

ª®®¬ ×
©­­«

2

24

ª®®¬ =
©­­«
− 17

9

4
3

ª®®¬
Ce système a donc pour solution 𝑥 = − 17

9 et 𝑦 = 4
3 .
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