Chapitre 4 : Calcul matriciel
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1 Matrices

1.1 Définitions

Définition :
Soit n et p deux entiers naturels non nuls.
Une matrice n X p est un tableau a n lignes et p colonnes, que I’on note

aip a2 - aip
azp azp - azp
A= . .. . ou A= (aij)

dpl Ap2 *** Anp

Le premier indice i désigne la ligne, le deuxieme j la colonne.

Exemple :

1170
* La matrice A = ( L \5 5) est une matrice 2 X 3 a deux lignes et trois colonnes.
2

* an; est le coefficient situé a I’intersection de la 2i¢™e ligne et de la 3ieme colonne, il vaut 5.

Définition :
Soit A une matrice n X p.
aj

aj
e Si p =1, A est une matrice colonne : A =

An
* Sin =1, A est une matrice ligne : A = (a; a» --- ap)
Sin = p, A est une matrice carrée. Les coefficients a;; sont appelés coefficients diagonaux :

aip a2 - Adin
a1 ay --- A
dpl An2 *°* dnn

» La matrice n X p dont tous les coefficients sont nuls s’appelle la matrice nulle.

Exemple :

La matrice M = (_23

) est une matrice colonne.

* Lamatrice N = (=1 2 7 5) est une matrice ligne.

2 21 -3
e Lamatrice P=| 1 —1 6 |estune matrice carrée d’orde 3.
-4 0

. 000 .
e La matrice O = ( est une matrice nulle.

ooo)



1.2 Matrices carrées particulieres

Soit A = (a;;) une matrice carrée de taille n.

* Sia;j =0desquei > j, A est appelée matrice triangulaire supérieure :

aip ai -+ din

0 axn - am

A= )

0 0 - ay
e Sia;j =0desquei < j, A est appelée matrice triangulaire inférieure :

app 0 -+ 0

az ay -+ 0

apl Ap2 * - Anp

* Sia;; =0desquei # j, A est appelée matrice diagonale :

ajp 0 --- 0
0 ap--- 0
A= . . . .
0 0 - ay,

« Si de plus les termes diagonaux sont tous égaux a 1, elle est appelée matrice unité :

I =

Exemple :
123
* Matrice triangulaire supérieure : 7 =04 0
006
. . o 10
¢ Matrice triangulaire inférieure : V = 56
-1000
Lo 0500
* Matrice diagonale : D = 00170
000e

Propriété :

Les matrices A = (a;;) et B = (b;;) de dimension n X p sont égales ssi a;; = b;; pour tous i, ;.



2 Opérations sur les matrices

2.1 Multiplication d’une matrice par un scalaire

Propriété :
Si A = (a;;) et A € R, on définit 1A comme étant la matrice C = (c;;) telle que :

¢ij = Aa;j pour tous i, j

11 s’agit donc simplement de multiplier chaque terme de la matrice.

Exemple :

1

3), on a alors :
2

2x4i —2x1 -1-2
_JA = 2 =
2= (550 )= (07

O I

On considere la matrice A = (

2.2 Somme de deux matrices de méme taille

Propriété :
Si A = (a;;) et B = (b;;) sont deux matrices n X p, on définit la somme A + B comme étant la matrice C = (c;;) de
taille n X p telle que :

cij = ajj + b;; pour tous i, j

Il s’agit donc simplement d’additionner les termes de méme emplacement de chaque matrice.

Exemple :
Somme de deux matrices 2 X 3 :

10-1 + 0-1-2y (1+00-1-1-2y (1 -1-3
21 4 -3 1 5) \2-31-1445)"\-12 9
2.3 Multiplication de deux matrices

Propriété :
Soit A = (a;;) de taille n X p et B = (bjx) de taille p X ¢, on définit le produit A X B (aussi noté AB) comme étant la
matrice C = (c;;) définie par :

)4
Cij:Zaikbkj pourl <i<netl<j<gq
k=1



! Remarque

Le produit n’est défini que si le nombre de colonnes de A est égal au nombre de lignes de B.
A B B A

OK'! +
AXB Dimensions incompatibles

3x2 pour la multiplication

Présentation du calcul :

O« 1] 1
210
-1 3] 1
1 2 -1 c12

On a donc :
cp=1xXx1+2%x2-1%x3=2

On obtient donc :

2.4 Inverse d’une matrice

Définition :
Une matrice carrée A est dite inversible s’il existe une matrice carrée C telle que :

AXC=CxA=1
ou / est la matrice identité.

C est alors unique et est notée C = A~

On se contentera en général d’utiliser la calculatrice ou un logiciel de calcul formel pour déterminer la matrice inverse d’une
matrice donnée.



3 Application a la résolution de systemes linéaires

Un systéme de n équations linéaires a n inconnues est de la forme :

apnxy +apxy +...adipxy = b]

az Xy + axpxy + ... ayux, = bz

An X1 + apaXxy + ... AppXy = by
ou les a;; sont les coeflicients du systeme, les x; les inconnues et les b; les termes constants.

Un tel systeme peut s’écrire sous forme matricielle :

AX =B
avec :
aip a2 ... Al X1 b]
aj) dzp ... dop X2 b2
= ; X = ) B =
anl An2 - .. dnn Xn by

Propriété :

Un systéme d’équations de type AX = B, ol A est une matrice carrée connue qui admet une matrice inverse A~!, B une
matrice colonne connue et X une matrice colonne d’inconnues peut étre résolu par :

X=A"xB
Exemple :
On considere le systéme suivant :
6x + 10y = 2
(8):
12x + 35y =24

On peut réécrire ce systeme sous forme matricielle AX = B avec :

6 10 X 2
A= ; X = et B=
12 35 y 24
Avec un logiciel de calcul formel on obtient :
2 _1
A_l - 18 9
_2 1
15 15
On obtient donc :
z _1 2 1
X=A"'xB=[" 7|x =’
2 1 4
5 15) \# 3
N : __17 _ 4
Ce systeme a donc pour solution x = —5 ety = 3.
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