Chapitre 2 : Equations différentielles

Axel Carpentier
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Equations différentielles d'ordre 1

Définition :

Une équation différentielle linéaire du premier ordre est une équation, dont I'inconnue est
une fonction y de la variable t, de la forme

(E):  ay'(t) + by(t) = f(t)

ou a et b sont des constantes réelles, et f est une fonction.

Exemple :
L’équation y’ — 2y = xe* est une équation linéaire du premier ordre d'inconnue y de la
variable x.
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Solution générale de I'équation sans second membre

Soit :

(En): ay'(t) +by(t) =0
Cette équation est appelée équation homogene associée a (E).
a étant un réel non nul, on peut encore écrire :

(En): Y()+ y(t) =0

Propriété :

Les solutions de : b
(En): y'+-y=0

sont données par les fonctions :

y it Ce st o CeR
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Solution générale de I'équation sans second membre

Exemple :
On considere I'équation :
y =2y =0

On a alors I'ensemble des fonctions solutions :

y(t) = Ce**
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Solution particuliere de I'équation différentielle (E)

Définition :

On appelle solution particuliere de I'équation différentielle :

(E): ay'(t)+ by(t) = (1)

toute fonction y vérifiant cette équation.
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Solution particuliere de I'équation différentielle (E)

Il existe plusieurs méthodes pour trouver une solution particuliére :

® Cas ou f(t) est une constante :
On recherche aussi y, sous la forme d'une constante: y,(t) = C.
e Cas ou f(t) est un polynéme :
On recherche y, sous la forme d'un polyndme de méme degré.
e Cas ol f(t) = Acos(wt + ¢) + Bsin(wt + ¢) :
On recherche y,(t) = A’ cos(wt + ¢) + B’ sin(wt + ¢)
e Cas ol f(t) = ket :
On recherche y, sous la forme y,(t) = Ae*t.

Exercice :
Montrer que g(x) = xe* est solution particuliere de I'équation différentielle :

y' =2y = xe*
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Ensemble des solutions d'une équation différentielle

Théoréeme :

Les solutions d'une équation différentielle (E) sont de la forme :

y(8) = yn(t) + yp(t)

ol yp est la solution de I'équation sans second membre (Ejp) et y, une solution
particuliere de I'équation complete (E).

Exercice :
Déterminer les solutions de I'équation différentielle :

y' —2y = xe*
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Unicité de la solution sous condition

Théoréeme :

Une équation différentielle linéaire du premier ordre a une solution unique vérifiant une
condition initiale donnée.

Exercice :
Déterminer la solution f telle que f(0) = 0 de I'équation différentielle :

y' =2y = xe*
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Equations différentielles d'ordre 2

Définition :

Une équation différentielle linéaire du second ordre est une équation, dont |'inconnue est
une fonction y de la variable t, de la forme

(E): ay"(t) + by'(t) + cy(t) = (t)

ou a, b et c sont des constantes réelles, et f est une fonction.

Exemple :
L’équation y” — 2y’ + y = 8e* est une équation linéaire du second ordre d'inconnue y de
la variable x.
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Solution générale de I'équation sans second membre

Théoréeme :

On considére I'équation homogene:
(En): ay"+by'+cy=0
d'équation caractéristique associée :
ar’ +br+c=0
Le tableau suivant donne les solutions de (Ej) en fonction du discriminant

A = b% — 4ac

Dans tous les cas, a et b sont des constantes réelles quelconque.
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Solution générale de I'équation sans second membre

Théoréeme :

a-+ifeta—if
vV—A
2a

—b
U = — et =
ol « 2ae5

Solutions de [I'’équation car- | Solution générale de (Ep)
actéristique associée
A > 0 | 2 racines réelles y(t) = Aet + Bet
-b— VA —b+ VA
n=———etn=——"-——
2a 2a
A =0 | une racine double réelle y(t) = (At + B)e™
b
~ 2a
A < 0 | 2 racines complexes conjuguées y(t) = e**[Acos(Bt) + Bsin(f5t)]
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Solution générale de I'équation sans second membre

Exemple :
® Résolution de I'équation différentielle :

(En): y'+w?y=0
® L'équation caractéristique de (Ej) est r? + w? = 0 de discriminant A = —4w? < 0.
Les solutions de cette équation sont 0 + jw et 0 — jw.

® Les solutions de (Ej,) sont du type
yr(x) = €2**[Acos(wx) + Bsin(wx)] = Acos(wx) + Bsin(wx).
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Solution générale de I'équation sans second membre

® Résolution de I'équation différentielle :

(En): 2y" =5y’ =3y =0

® L'équation caractéristique de (Ej) est 2r2 — 5r — 3 = 0 de discriminant A = 49 > 0.
Les solutions de cette équation sont r; = ) et n =3.

® Les solutions de (Ej,) sont donc du type yj(x) = Aez* 4 Be®
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Solution générale de I'équation sans second membre

® Résolution de I'équation différentielle :

(En): y'=2y'+y=0

® L'équation caractéristique de (Ej) est r> —2r + 1 = 0 de discriminant A = 0.
L'équation admet donc une solution double r = 1.
® Les solutions de (Ep) sont donc du type yi(x) = (Ax + B)e*.
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Solution particuliere de I'équation différentielle (E)

Définition :

On appelle solution particuliere de I'équation différentielle :

(E): ay"(t) + by'(t) + cy(t) = £(t)

toute fonction y vérifiant cette équation.

Exercice :
Montrer que g(x) = 4x?eX est solution particuliere de I'équation différentielle :

y”—2y’+y:86X

24 /28



Equations différentielles d'ordre 2

2. Equations différentielles d'ordre 2

2.3 Ensemble des solutions d'une équation différentielle

25 /28



Ensemble des solutions d'une équation différentielle

Théoréeme :

Les solutions d'une équation différentielle (E) sont de la forme :

y(8) = yn(t) + yp(t)

ol yp est la solution de I'équation sans second membre (Ejp) et y, une solution
particuliere de I'équation complete (E).

Exercice :
Déterminer les solutions de I'équation différentielle :

y”—2y’+y:86X
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2.4 Unicité de la solution sous condition
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Unicité de la solution sous condition

Théoreme :

Une équation différentielle linéaire a coefficients constants du second ordre (E) possede
une unique solution vérifiant deux conditions initiales.

Exercice :
Déterminer la solution f telle que 7(0) = —4 et f'(0) = —4 de I'équation différentielle :

y”—2y’+y=8ex
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