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1 Introduction

Les problèmes de l’échantillonnage et de l’estimation sont illustrés par l’étude de la situation suivante :

Un industriel produit en très grand nombres des yaourts, pour lesquelles l’usinage doit respecter des normes sanitaires
draconiennes. Á la suite de mauvais réglages de l’une des machines, l’industriel a produit 1 million de ces yaourts, dont
beaucoup risquent ainsi de présenter des dangers pour le consommateur.
Il souhaite connaı̂tre la proportion de yaourts susceptibles de rendre malade un client, afin de savoir s’il doit détruire sa
production, ce qui représentera un fort manque à gagner, ou s’il peut malgré courir le risque de quelques gênes isolées dans
la population, sans craindre de campagne médiatique mettant en cause ces yaourts, ce qui lui causerait un préjudice encore
plus grand.
Il est ainsi prêt à détruire son stock ainsi produit si la proportion de yaourts dangereux pour la santé dépasse les 0, 01% de
sa production.
Il n’est bien entendu pas question d’analyser un par un tous les yaourts produits : cela lui reviendrait encore plus cher, et
de toutes façons, il faudrait ouvrir les yaourts, ce qui les rendrait invendables. Il décide donc d’effectuer un sondage c’est à
dire de prélever par exemple 100 yaourts, de les faire analyser, et de relever la proportion de yaourts contaminés dans cet
échantillon.
Il obtient ainsi la résultat suivant : dans l’échantillon prélevé (au hasard) parmi les yaourts produits, on en a trouvé 2% qui
contenaient des germes. Notre industriel est-il plus avancé après ces analyses pour résoudre son problème ?

La réponse est bien sûr négative : en effet, il peut toujours se poser les questions suivantes :

1. aurait-on obtenu le même pourcentage en prélevant un autre échantillon ? (autrement dit, la proportion inquiétante relevée
dans le premier échantillon est-elle due à de la malchance ?)

2. l’analyse de 100 yaourts sur le million produit est-elle suffisante ?
3. quelle confiance peut-on accorder au fait que l’analyse d’un échantillon de 100 yaourts ait conduit à une proportion de 2%

de produits contaminés ?
4. aurait-on gagné en fiabilité du pronostique si l’on en avait fait analyser 200, 1000, 10000 yaourts ?

La question 1., elle, relève du champ de l’échantillonnage. Cette théorie répond à la question : ”comment varie la proportion
relevée d’un échantillon à l’autre, sachant que tous sont de même taille donnée à l’avance ?”. Ces questions ont des réponses
fournies par le théorème de la limite centrée vue dans un précédent chapitre.
Les questions 2., 3. et 4., portant sur la taille de l’échantillon, et sur la confiance que l’on peut accorder au sondage sont du
domaine de l’estimation : elles obtiennent une réponse avec les résultats sur la ”loi des grands nombres”.

L’échantillonnage est l’étude des liens existant entre les
paramètres (moyenne ou fréquence) des échantillons issus
d’une population et les paramètres de la population complète.

L’échantillonnage statistique consiste à prédire, à partir d’une
population connue les caractéristiques des échantillons qui en
seront prélevés.
On parle aussi de déduction des caractéristiques de
l’échantillon.

Inversement, les statistiques inférentielles s’interessent à la
détermination des paramètres de la population complète à
partir de ceux d’un échantillon.
L’inférence statistique consiste à induire les caractéristiques
inconnues d’une population à partir de celles d’un échantillon.
On parle aussi d’induction, ou encore d’extrapolation des
caractéristiques à l’ensemble de la population.

Population

Echantillon
de taille 𝑛

Inférence
(Induction)

Echantillonnage
(Déduction)
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2 Estimation

2.1 Estimation ponctuelle d’un paramètre

2.1.1 Moyenne

Propriété :
La valeur moyenne 𝑚𝑒 d’un paramètre observé sur un échantillon de population, dont la taille est fixée, fournit une
estimation 𝑥 de la moyenne réelle de ce paramètre sur la population considérée.

Exemple :
Une usine produit des vis cruciformes. On souhaite estimer la moyenne des longueurs des vis dans la production de la journée
qui s’élève à 10000 pièces.
On choisit un échantillon de 150 vis et on obtient une moyenne de 𝑚𝑒 = 4, 57 cm.
On en déduit donc que la longueur moyenne des vis de la production journalière est 𝑥 = 4, 57 cm.

2.1.2 Ecart type

Le problème est toujours le même, mais cette fois-ci, l’estimation de l’écart-type est moins intuitive . . .

Propriété :
L’écart-type 𝜎𝑒 d’un paramètre observé sur un échantillon de population, dont la taille est fixée, fournit une estimation
faussée de l’écart-type de ce paramètre dans toute la population considérée.
Une meilleure estimation 𝜎 de l’écart-type réel est obtenue en considérant le nombre :

𝜎 = 𝜎𝑒

√︂
𝑛

𝑛 − 1

où 𝑛 est la taille de l’échantillon servant au calcul de 𝜎𝑒.

Exemple :
La mesure de la longueur des vis produites dans l’échantillon précédent de 150 pièces conduit à relever un écart-type de 3 mm.
La meilleure estimation possible de l’écart-type de la production journalière n’est pas de 3 mm comme dans le cas précédent

pour la moyenne, mais de 𝜎 = 3
√︂

150
149

≃ 3, 01 mm.

•! Remarque

La correction devient assez rapidement minime lorsque la taille de l’échantillon augmente car :

lim
𝑛→∞

√︂
𝑛

𝑛 − 1
= 1

La correction est ainsi :

• de l’ordre de 0, 5% pour des échantillons de taille 100
• de l’ordre de 0, 05% pour des échantillons de taille 1000.
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2.1.3 Fréquence

Propriété :
La fréquence d’apparition 𝑓𝑒 d’un paramètre observé sur un échantillon de population, dont la taille est fixée, fournit
une estimation 𝑓 de la fréquence réelle d’apparition de ce paramètre sur la population considérée.

Exemple :
Dans l’exemple précédent, On prélève un échantillon de 150 vis et on relève 3 pièces défectueuses.
On peut alors donner une estimation de la fréquence 𝑓 de vis défectueuses dans la production journalière :

On a 𝑓𝑒 =
3

150
= 0, 02 donc, 𝑓 = 0, 02.

•! Remarque

Notons qu’il revient exactement au même d’estimer un pourcentage : dans l’exemple précédent, on peut affirmer que 2% des
vis ont une croix mal formée sur la tête.

2.2 Estimation par intervalle de confiance d’un paramètre

Les estimations ponctuelles proposées ci-dessus dépendent directement de l’échantillon prélevé au hasard.
Dans de très nombreux cas, l’importance attribuée au hasard est grande, cela conduit à s’interroger avant d’utiliser ces
estimations pour prendre des décisions dont les conséquences peuvent être lourdes !
Aussi, sans rejeter les informations fournies par l’étude d’un échantillon, est-on amené à chercher un nouveau type d’estimation
de la fréquence et de la moyenne d’une population, en utilisant le calcul de probabilités qui permet de ”contrôler” l’influence
d’un échantillon particulier.

2.2.1 Moyenne

On souhaite, à partir des observations faites sur un échantillon, déterminer un intervalle de confiance contenant la valeur
moyenne avec un risque d’erreur décidé à l’avance.

On suppose que les conditions sont réunies pour faire l’approximation que la loi d’échantillonnage de la moyenne 𝑋 est la loi

normale N
(
𝑚;

𝜎
√
𝑛

)
.

On pose 𝑇 =
𝑋 − 𝑚

𝜎√
𝑛

, 𝑇 suit donc la loi normale centrée réduite N(0; 1).

Soit 𝛼 la probabilité, fixée à l’avance, pour que 𝑇 n’appartienne pas à l’intervalle [−𝑡; 𝑡], on peut écrire :

𝑃( |𝑇 | > 𝑡) = 𝛼 ⇐⇒ 1 − 𝑃( |𝑇 | ≤ 𝑡) = 𝛼

⇐⇒ 𝑃( |𝑇 | ≤ 𝑡) = 1 − 𝛼

⇐⇒ 𝑃(−𝑡 ≤ 𝑇 ≤ 𝑡) = 1 − 𝛼

⇐⇒ 𝑃

(
−𝑡 ≤ 𝑋 − 𝑚

𝜎√
𝑛

≤ 𝑡

)
= 1 − 𝛼

⇐⇒ 𝑃

(
𝑋 − 𝑡

𝜎
√
𝑛
≤ 𝑚 ≤ 𝑋 + 𝑡

𝜎
√
𝑛

)
= 1 − 𝛼

(1)
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Autrement dit, 𝑚 appartient à l’intervalle
[
𝑋 − 𝑡

𝜎
√
𝑛

; 𝑋 + 𝑡
𝜎
√
𝑛

]
pour 100(1 − 𝛼)% des échantillons.

• Cet intervalle est appelé intervalle de confiance,
• 𝛼 est le risque d’erreur ou le seuil de risque,
• 1 − 𝛼 est le coefficient de confiance.

Propriété :
L’intervalle de confiance de la moyenne 𝑚 au seuil de confiance 1 − 𝛼 (ou risque 𝛼) est :

𝐼𝛼 =

[
𝑚𝑒 − 𝑡

𝜎
√
𝑛

;𝑚𝑒 + 𝑡
𝜎
√
𝑛

]

•! Remarque

Les valeurs fréquentes du niveau de confiance sont 0, 99 et 0, 95.
Pour ces deux valeurs, on obtient successivement 𝑡 = 2, 575 et 𝑡 = 1, 96.

Exemple :
On suppose que la durée de vie, exprimée en heures, d’une ampoule électrique d’un certain type, suit la loi normale de moyenne
𝑀 inconnue et d’écart-type 𝜎 = 20.
Une étude sur un échantillon de 16 ampoules donne une moyenne de vie égale à 3000 heures.
On va déterminer un intervalle de confiance de 𝑀 au seuil de risque de 5%.

On a : 𝛼 = 5% d’où 𝑡 = 1, 96.
Un intervalle de confiance de 𝑀 est donc :

𝐼0,05 =

[
3000 − 1, 96

20
√

16
; 3000 + 1, 96

20
√

16

]
= [2990, 3009]

2.2.2 Fréquence

A l’aide d’un échantillon, nous allons définir, avec un coefficient de confiance choisi à l’avance, un intervalle de confiance de
la fréquence 𝑝 des éléments de la population possédant une certaine propriété.

On se place dans le cas où on peut approximer la loi par la loi normale N
(
𝑝;

√︂
𝑝(1 − 𝑝)

𝑛

)
.

Propriété :
L’intervalle de confiance de la moyenne 𝑚 au seuil de confiance 1 − 𝛼 (ou risque 𝛼) est :

𝐼𝛼 =

[
𝑓𝑒 − 𝑡

√︂
𝑓𝑒 (1 − 𝑓𝑒)

𝑛
; 𝑓𝑒 + 𝑡

√︂
𝑓𝑒 (1 − 𝑓𝑒)

𝑛

]

Exemple :
Un sondage dans une commune révèle que sur les 500 personnes interrogées, 42% sont mécontentes de l’organisation des
transport. On veut déterminer, au seuil de risque 1%, un intervalle de confiance du pourcentage 𝑝 de personnes mécontentes
dans la commune :
On a :

𝑓 = 0, 42 ; 𝑛 = 500 ; 𝛼 = 1% donc 𝑡 = 2, 575
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Un intervalle de confiance du pourcentage 𝑝 est donc :

𝐼0,01 =

[
0, 42 − 2, 575

√︂
0, 42 × 0, 58

500
; 0, 42 + 2, 575

√︂
0, 42 × 0, 58

500

]
= [0, 36; 0, 48] = [36%; 48%]

2.3 Tableau récapitulatif

Le tableau ci-dessous regroupe toutes les situations dans lesquelles on doit savoir fournir une estimation ponctuelle ou par
intervalle de confiance :

Paramètre de la Valeur du Estimation ponctuelle Estimation par intervalle de confiance
population totale paramètre dans pour la au niveau de confiance 1 − 𝛼

à estimer l’échantillon de taille 𝑛 population totale pour la population totale

Moyenne 𝑚𝑒 𝑚 = 𝑚𝑒

[
𝑚𝑒 − 𝑡

𝜎
√
𝑛

;𝑚𝑒 + 𝑡
𝜎
√
𝑛

]
Écart-type 𝜎𝑒 𝜎 = 𝜎𝑒

√︂
𝑛

𝑛 − 1

Fréquence 𝑓𝑒 𝑓 = 𝑓𝑒

[
𝑓𝑒 − 𝑡

√︂
𝑓𝑒 (1 − 𝑓𝑒)

𝑛
; 𝑓𝑒 + 𝑡

√︂
𝑓𝑒 (1 − 𝑓𝑒)

𝑛

]

3 Tests d’hypothèse

Pour remplir des paquets de farine de 10 kg, on utilise une ensacheuse réglée avec précision, mais on ne peut espérer que
tous les paquets sortant de la machine pèsent exactement 10 kg. On peut seulement exiger que l’espérance mathématique des
masses de tous les paquets produits soit de 10 kg.
Ainsi, une palette de 50 paquets pèsera par exemple 497 kg. Doit-on en conclure que la machine est mal réglée ?
Si, après avoir réglé différemment la machine, une nouvelle palette de50 paquets pèse 502 kg, peut-on en conclure que la
machine est mieux réglée ?
Ce sont les tests de validité d’hypothèse qui permettent de prendre une décision. Ces décisions seront prises avec un certain
risque a priori.

Dans toute cette partie, les notions seront abordées grâce à des exemples.
Pour chaque test, on appliquera le cheminement suivant :
Construction du test de validité d’hypothèse.

• Étape 1 : choix des deux hypothèses : l’hypothèse nulle 𝐻0 et l’hypothèse alternative 𝐻1 ;

• Étape 2 : détermination de la variable aléatoire de décision et de ses paramètres (on utilisera en général la loi normale ;

• Étape 3 : l’hypothèse nulle étant considérée comme vraie et compte tenu de l’hypothèse alternative, détermination de la
zone critique selon le niveau de risque 𝛼 donné.
On cherche 𝐼𝛼 = [𝑎, 𝑏] tel que P(𝑎 ≤ 𝑋 ≤ 𝑏) = 1 − 𝛼 dans le cas bilatéral et 𝐼𝛼 = [𝑎;+∞[ ou 𝐼𝛼 =] − ∞; 𝑏] dans le cas
unilatéral ;

• Étape 4 : rédaction d’une règle de décision.

Utilisation du test d’hypothèse.

• Étape 5 : calcul des caractéristiques d’un échantillon particulier puis application de la règle de décision.
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3.1 Test bilatéral relatif à une moyenne

Exemple :
Une machine produit des rondelles dont l’épaisseur est une variable aléatoire 𝑋 d’écart type 0, 3 mm. La machine a été réglée
pour obtenir des épaisseurs de 5 mm.
Un contrôle portant sur un échantillon de 100 rondelles a donné 5, 07 mm comme moyenne des épaisseurs de ces 100 rondelles.
Peut-on affirmer que la machine est bien réglée au seuil de risque de 5% ?

1. Choix des hypothèses.
On estime que la machine est bien réglée, si la moyenne de toutes les rondelles produites par la machine est 5 mm. C’est
donc l’hypothèse 𝑚 = 5 que nous allons tester. On l’appelle l’hypothèse nulle 𝐻0.
Sinon, on choisit comme hypothèse alternative l’hypothèse 𝐻1 : ”𝑚 ≠ 5”.
On a donc :

• 𝐻0 : ”𝑚 = 5”
• 𝐻1 : ”𝑚 ≠ 5”

Recherchons comment la moyenne 𝑚𝑒, d’un échantillon de 100 rondelles peut confirmer ou non l’hypothèse 𝐻0.

2. Variable aléatoire de décision.
Soit 𝑚 l’espérance mathématique de 𝑋 , c’est-à-dire la moyenne des épaisseurs de toutes les rondelles produites par la
machine ainsi réglée.
Considérons la variable aléatoire 𝑀 qui, à chaque échantillon de taille 100, associe sa moyenne.

La taille des échantillons étant suffisamment grande, on considère que 𝑀 suit la loiN
(
𝑚;

0, 3
√

100

)
, c’est-à-direN(𝑚; 0, 03).

𝑀 sera la variable aléatoire de décision.

3. Zone critique.
Dons le cas où l’hypothèse 𝐻0 est vraie, la variable aléatoire 𝑀 suit la loi N(5; 0, 03).
On cherche alors le réel 𝑑 tel que :

(𝐸) : P(5 − 𝑑 ≤ 𝑀 ≤ 5 + 𝑑) = 0, 95

la variable aléatoire 𝑇 =
𝑀 − 5
0, 03

suit la loi normale centrée réduite N(0, 1), on a alors :

(𝐸) ⇐⇒ P(5 − 𝑑 ≤ 0, 03𝑇 + 5 ≤ 5 + 𝑑) = 0, 95

⇐⇒ P
(
− 𝑑

0, 03
≤ 𝑇 ≤ 𝑑

0, 03

)
= 0, 95

⇐⇒ 2Π
(

𝑑

0, 03

)
− 1 = 0, 95

⇐⇒ Π

(
𝑑

0, 03

)
= 0, 975

(2)

On trouve alors d’après la table que
𝑑

0, 03
= 1, 96 soit 𝑑 = 0, 0588 ≈ 0, 06.

L’intervalle de confiance est donc l’intervalle :

𝐼0,05 = [5 − 0, 06; 5 + 0, 06] = [4, 94; 5, 06]

On pourra également utiliser directement la calculatrice ou un logiciel de calcul formel pour déterminer la valeur du réel
𝑑 respectant (𝐸).
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On obtient alors graphiquement la situation suivante :

4, 94 5, 06

Zone critique Zone critique

5

Hypothèse 𝐻0acceptée

𝑑 𝑑

0, 95

0, 0250, 025

La probabilité qu’un échantillon ait une moyenne située hors de cet intervalle étant 0, 05, on peut considérer que cet
événement est rare. Ainsi, la moyenne de notre échantillon 𝑚𝑒 = 5, 07 nous amène à douter de la validité de l’hypothèse
𝐻0.
Ne perdons pas de point de vue qu’il se peut, malgré tout, que la machine soit bien réglée et que notre échantillon fasse
partie des 5% de ceux ayant une moyenne hors de l’intervalle trouvé. C’est pourquoi cette région est appelée zone critique.

4. Règle de décision.
Si la moyenne de l’échantillon n’est pas située dans la zone critique, on accepte 𝐻0, sinon, on refuse 𝐻0 et on accepte 𝐻1.

5. Conclusion.
Puisque 5, 07 appartient à la zone critique, on décide de rejeter l’hypothèse 𝐻0 et d’accepter l’hypothèse alternative 𝐻𝑙 :
𝑚 ≠ 5 (la machine n’est pas bien réglée).

Dans un test de validité d’hypothèse, le seuil de risque 𝛼 est la probabilité de rejeter 𝐻0 alors qu’elle est vraie.

3.2 Test unilatéral relatif à une moyenne

Exemple :
La durée de vie (en heures) des ampoules électriques produites par une usine est une variable aléatoire 𝑋 d’écart type 120. Le
fabricant annonce qu’en moyenne, les ampoules ont une durée de vie de 1120 heures.
On demande de rédiger une règle de décision pour vérifier l’affirmation du fabriquant, au seuil de risque de de 5%, en testant
un échantillon de 36 ampoules.

1. Choix des hypothèses.
Soit l’hypothèse nulle 𝐻0 : 𝑚 = 1120 (l’affirmation du fabricant est vraie).
Dans l’exemple précédent, les rondelles devaient avoir une épaisseur moyenne de 5 mm et cette mesure ne supportait ni
excès, ni déficit. Ici, l’acheteur ne se plaindra que si la durée de vie des ampoules est inférieure à 1120 heures ; dans le cas
où la moyenne 𝑚𝑒, de l’échantillon est supérieure à 1 120, l’hypothèse du fabricant se trouve immédiatement confirmée.
L’hypothèse alternative 𝐻𝑙 est donc 𝑚 < 1120 (l’affirmation du fabricant est fausse).
On a donc :

• 𝐻0 : ”𝑚 = 1120”
• 𝐻1 : ”𝑚 < 1120”

2. Variable aléatoire de décision.
Soit 𝑚 l’espérance mathématique de X, c’est-à-dire la moyenne des durée de vie de toutes les ampoules produites par
l’usine. Considérons la variable aléatoire 𝑀 qui, à chaque échantillon de 36 ampoules associe la moyenne de durée de vie
des 36 ampoules.

La taille des échantillons étant suffisamment grande, on considère que 𝑀 suit la loi N
(
𝑚;

120
√

36

)
, c’est-à-dire N(𝑚; 20).

9



3. Zone critique.
La zone critique se trouve donc d’un seul côté de la moyenne. On dit alors que le test est unilatéral par opposition au test
bilatéral effectué au paragraphe précédent.
Dans le cas où l’hypothèse 𝐻0 est vraie, la variable aléatoire 𝑀 suit la loi N(1120; 20).

On cherche alors le réel 𝑑 tel que :
(𝐸) : P(𝑀 < 1120 − 𝑑) = 0, 05

la variable aléatoire 𝑇 =
𝑀 − 1120

20
suit la loi normale centrée réduite N(0, 1), on a alors :

(𝐸) ⇐⇒ P(20𝑇 + 1120 < 1120 − 𝑑) = 0, 05

⇐⇒ P
(
𝑇 < − 𝑑

20

)
= 0, 05

⇐⇒ P
(
𝑇 >

𝑑

20

)
= 0, 05

⇐⇒ 1 − P
(
𝑇 ≤ 𝑑

20

)
= 0, 05

⇐⇒ Π

(
𝑑

20

)
= 0, 95

(3)

On trouve alors d’après la table que
𝑑

20
= 1, 645 soit 𝑑 = 32, 9 ≈ 33.

La zone critique est donc l’intervalle :

𝐼0,05 =] − ∞; 1120 − 33] =] − ∞; 1087]

On pourra également utiliser directement la calculatrice ou un logiciel de calcul formel pour déterminer la valeur du réel
𝑑 respectant (𝐸).

On obtient alors graphiquement la situation suivante :

1087

Zone critique

1120

Hypothèse 𝐻0acceptée

𝑑

0, 95

0, 05

La zone critique est l’intervalle ] − ∞; 1087[ : 5% seulement des échantillons de taille 36 ont en moyenne une durée de
vie inférieure à 1087 heures.

4. Règle de décision.
Si la moyenne 𝑚𝑒 de l’échantillon observé est inférieure à 1087, on rejette l’hypothèse 𝐻0 et on accepte l’hypothèse
alternative 𝐻1 (l’affirmation du fabricant est fausse).
Si la moyenne 𝑚𝑒 de l’échantillon observé est supérieure à 1087, on accepte l’hypothèse 𝐻0.
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3.3 Test unilatéral relatif à une fréquence

On donne ici un exemple de test unilatéral relatif à une fréquence, mais d’autres cas peuvent amener à envisager des tests
bilatéraux relatifs à une fréquence.

Exemple :
Un joueur qui doit choisir au hasard une carte dans un jeu de 32 cartes obtient certains avantages s’il découvre un roi. On
constate qu’il a retourné 134 fois un roi sur 800 essais.
Peut-on présumer, au seuil de risque de 1%, que ce joueur est un tricheur ?

1. Choix des hypothèses.
Si le joueur n’est pas un tricheur, la valeur de 𝑝 est

4
32

= 0, 125.
Donc, l’hypothèse nulle 𝐻0 est 𝑝 = 0, 125 (le joueur n’est pas un tricheur).
Si 𝑝 < 0, 125, on considérera que le joueur n’est pas un tricheur non plus, donc : l’hypothèse alternative 𝐻1 est 𝑝 > 0, 125
(le joueur est un tricheur).
On a donc :

• 𝐻0 : ”𝑝 = 0, 125”
• 𝐻1 : ”𝑝 > 0, 125”

2. Variable aléatoire de décision.
Soit 𝑝 la fréquence de rois que le joueur découvrirait s’il jouait une infinité de fois.
Soit 𝐹 la variable aléatoire qui, à chaque échantillon de 800 essais, associe la fréquence d’apparition du roi. La taille des

échantillons étant suffisamment grande, on considère que 𝐹 suit la loi N
(
𝑝;

√︂
𝑝(1 − 𝑝)

800

)
. 𝐹 sera la variable aléatoire de

décision.

3. Zone critique.

Dans le cas où l’hypothèse 𝐻0 est vraie, la variable aléatoire 𝐹 suit la loi N
(
0, 125;

√︂
0, 125 × 0, 875

800

)
soit

N(0, 125; 0, 0117).
On cherche alors le réel 𝑑 tel que :

(𝐸) : P(𝐹 > 0, 125 + 𝑑) = 0, 01

la variable aléatoire 𝑇 =
𝐹 − 0, 125

0, 0117
suit la loi normale centrée réduite N(0, 1), on a alors :

(𝐸) ⇐⇒ P(0, 0117𝑇 + 0, 125 > 0, 125 + 𝑑) = 0, 01

⇐⇒ P
(
𝑇 >

𝑑

0, 0117

)
= 0, 01

⇐⇒ 1 − P
(
𝑇 ≤ 𝑑

0, 0117

)
= 0, 01

⇐⇒ Π

(
𝑑

0, 0117

)
= 0, 99

(4)

On trouve alors d’après la table que
𝑑

0, 0117
= 2, 33 soit 𝑑 = 0, 027261 ≈ 0, 027.

La zone critique est donc l’intervalle :

𝐼0,01 = [0, 125 + 0, 027;+∞[= [0, 152;+∞[

On pourra également utiliser directement la calculatrice ou un logiciel de calcul formel pour déterminer la valeur du réel
𝑑 respectant (𝐸).

11



On obtient alors graphiquement la situation suivante :

0, 152

Zone critique

0, 125

Hypothèse 𝐻0acceptée

𝑑

0, 99

0, 01

Donc la zone critique est ]0, 152;+∞[.

4. Règle de décision.
Si la fréquence de l’échantillon est supérieure à 0, 152, on rejette l’hypothèse 𝐻0 et on accepte l’hypothèse 𝐻1 : l’hypothèse
𝐻0 n’est pas validée.
Si la fréquence de l’échantillon est inférieure à 0, 152, on accepte l’hypothèse 𝐻0 : l’hypothèse 𝐻0 est validée.

5. Conclusion.
L’échantillon observé a une fréquence égale à

134
800

= 0, 1675.
D’après la règle de décision, puisque 0, 1675 > 0, 152, on accepte l’hypothèse 𝐻1 : on décide que le joueur est un tricheur.

4 Test de comparaison

4.1 Comparaison de deux moyennes

Exemple :
Une entreprise fabrique des sacs en plastique pour déchets. Afin de surveiller la production, elle effectue des contrôles réguliers
portant sur le poids maximum que les sacs peuvent supporter.
Á une première date 𝑡1 , le contrôle de 100 sacs a donné une moyenne de 58 kg et un écart type de 3 kg.
À la seconde date 𝑡2, le contrôle de 150 sacs a donné une moyenne de 56 kg et un écart type de 5 kg.
Peut-on considérer, au risque de 4%, que la qualité des sacs a évolué entre les deux dates ?

1. Choix des hypothèses.
L’hypothèse nulle 𝐻0 est 𝑚1 = 𝑚2 (la qualité n’a pas évolué).
L’hypothèse alternative 𝐻1 est 𝑚1 ≠ 𝑚2 (la qualité a évolué).
On a donc :

• 𝐻0 : ”𝑚1 = 𝑚2”
• 𝐻1 : ”𝑚1 ≠ 𝑚2”

2. Variable aléatoire de décision.
Appelons 𝐸1 (resp. 𝐸2) l’ensemble de tous les sacs produits par l’entreprise à la date 𝑡1 (resp. 𝑡2).

• Soit 𝑀1 la variable aléatoire qui, à chaque échantillon de 100 sacs issus de la population 𝐸1, associe sa moyenne.

Une estimation ponctuelle de la moyenne et de l’écart-type de à la date 𝑡1 est : 𝑚1 = 58, et 𝜎1 = 3 ×
√︂

100
99

.

La taille des échantillons étant suffisamment grande, 𝑀1 suit la loi N
(
𝑚1;

𝜎1√
100

)
= N

(
58;

1
√

11

)
.
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• Soit 𝑀2 la variable aléatoire qui, à chaque échantillon de 150 sacs issus de la population 𝐸2, associe sa moyenne. Une

estimation ponctuelle de la moyenne et de l’écart-type à la date 𝑡2 est : 𝑚2 = 56, et 𝜎2 = 5 ×
√︂

150
149

.

La taille des échantillons étant suffisamment grande, 𝑀2 suit la loi N
(
𝑚2;

𝜎2√
150

)
= N

(
56;

5
√

149

)
.

• La variable aléatoire 𝐷 = 𝑀1 − 𝑀2 suit également une loi normale de paramètres :
– 𝐸 (𝐷) = 𝐸 (𝑀1) − 𝐸 (𝑀2) = 𝑚1 − 𝑚2.
– 𝑉 (𝐷) = 𝑉 (𝑀1) +𝑉 (𝑀2) =

1
11

+ 25
149

= 0, 2587.
D’où 𝜎𝐷 = 0, 51.
Donc 𝐷 suit la loi N(𝑚1 − 𝑚2; 0, 51). 𝐷 est la variable aléatoire de décision.

3. Zone critique.
Supposons que l’hypothèse 𝐻0 soit vraie, on a alors 𝑚1 − 𝑚2 = 0 ; alors 𝐷 suit la loi normale N(0; 0, 51).
On cherche alors le réel 𝑑 tel que :

(𝐸) : P(−𝑑 ≤ 𝐷 ≤ 𝑑) = 0, 95

la variable aléatoire 𝑇 =
𝐷

0, 51
suit la loi normale centrée réduite N(0, 1), on a alors :

(𝐸) ⇐⇒ P(−𝑑 < 0, 51𝑇 < 𝑑) = 0, 96

⇐⇒ P
(
− 𝑑

0, 51
≤ 𝑇 ≤ 𝑑

0, 51

)
= 0, 96

⇐⇒ 2Π
(

𝑑

0, 51

)
− 1 = 0, 96

⇐⇒ Π

(
𝑑

0, 51

)
= 0, 98

(5)

On trouve alors d’après la table que
𝑑

0, 51
= 2, 05 soit 𝑑 = 1, 0455 ≈ 1, 05.

Pour un seuil de risque de 4%, la zone critique est :

𝐼0,04 =] − ∞;−1, 05 [ ∪ ] 1, 05 ;+∞[

On pourra également utiliser directement la calculatrice ou un logiciel de calcul formel pour déterminer la valeur du réel
𝑑 respectant (𝐸).
On obtient alors graphiquement la situation suivante :

−1, 05 1, 05

Zone critique Zone critique

0

Hypothèse 𝐻0acceptée

𝑑 𝑑

0, 96

0, 020, 02

4. Règle de décision.
Si la différence des moyennes des deux échantillons est inférieure à −1, 05 ou supérieure à 1, 05, alors l’hypothèse 𝐻0 ,
n’est pas validée.
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Si la différence des moyennes des deux échantillons est comprise entre −1, 05 et 1, 05,l’hypothèse 𝐻0 est validée.

5. Conclusion.
La différence des moyennes des deux échantillons est 58 − 56 = 2 > 1, 05.
D’après la règle de décision, on rejette 𝐻0 et on décide que la qualité des sacs a évolué entre les dates 𝑡1 et 𝑡2.

4.2 Comparaison de deux fréquences

Exemple :
A l’issue d’un examen, il y a 23 reçus et 17 ajournés dans une classe et 15 reçus et 25 ajournés dans une autre classe.
La différence observée entre les deux pourcentages de réussite est-elle significative d’une différence de niveau entre les deux
classes, au seuil de 5% ?

1. Choix des hypothèses.
L’hypothèse nulle 𝐻0 est 𝑝1 = 𝑝2 (les deux populations ont le même niveau),
l’hypothèse alternative 𝐻1 est 𝑝1 ≠ 𝑝2 (les deux populations n’ont pas le même niveau).
On a donc :

• 𝐻0 : ”𝑝1 = 𝑝2”
• 𝐻1 : ”𝑝1 ≠ 𝑝2”

2. Variable aléatoire de décision.
On suppose que la première classe est issue d’une population 𝐶1pour laquelle la fréquence de succès est 𝑝1 , et que la
deuxième classe est issue d’une population 𝐶2 pour laquelle la fréquence de succès est 𝑝2.

• Soit 𝐹1 la variable qui, à chaque échantillon de 40 élèves de la population 𝐶1, associe sa fréquence de succès.

La taille des échantillons étant suffisamment grande, on considère que 𝐹1, suit la loi N
(
𝑝1;

√︂
𝑝1 (1 − 𝑝1)

40

)
.

Une estimation ponctuelle de la fréquence et de l’écart-type pour la population 𝐶1 est :

𝑝1 =
23
40

= 0, 545, et 𝜎1 =

√︂
40
39

×
√︂

0, 545(1 − 0, 545)
40

= 0, 079. Donc, 𝐹1 suit la loi N (𝑝1; 0, 079) .

• Soit 𝐹2 la variable qui, à chaque échantillon de 40 élèves de la population 𝐶2, associe sa fréquence de succès.

La taille des échantillons étant suffisamment grande, on considère que 𝐹2, suit la loi N
(
𝑝2;

√︂
𝑝2 (1 − 𝑝2)

40

)
.

Une estimation ponctuelle de la fréquence et de l’écart-type pour la population 𝐶2 est :

𝑝2 =
15
40

= 0, 375, et 𝜎2 =

√︂
40
39

×
√︂

0, 375(1 − 0, 375)
40

= 0, 078. Donc, 𝐹2 suit la loi N (𝑝2; 0, 078) .

• La variable aléatoire 𝐷 = 𝐹1 − 𝐹2 suit également une loi normale de paramètres :

– 𝐸 (𝐷) = 𝐸 (𝐹1) − 𝐸 (𝐹2) = 𝑝1 − 𝑝2.
– 𝑉 (𝐷) = 𝑉 (𝐹1) +𝑉 (𝐹2) = 0, 0772 + 0, 0782.

D’où 𝜎𝐷 = 0, 11.
Donc 𝐷 suit la loi N(𝑝1 − 𝑝2; 0, 11). 𝐷 est la variable aléatoire de décision.

3. Zone critique.
Supposons que l’hypothèse 𝐻0 soit vraie, on a alors 𝑝1 − 𝑝2 = 0 ; alors 𝐷 suit la loi normale N(0; 0, 11).
On cherche alors le réel 𝑑 tel que :

(𝐸) : P(−𝑑 ≤ 𝐷 ≤ 𝑑) = 0, 95
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la variable aléatoire 𝑇 =
𝐷

0, 11
suit la loi normale centrée réduite N(0, 1), on a alors :

(𝐸) ⇐⇒ P(−𝑑 < 0, 11𝑇 < 𝑑) = 0, 95

⇐⇒ P
(
− 𝑑

0, 11
≤ 𝑇 ≤ 𝑑

0, 11

)
= 0, 95

⇐⇒ 2Π
(

𝑑

0, 11

)
− 1 = 0, 95

⇐⇒ Π

(
𝑑

0, 11

)
= 0, 975

(6)

On trouve alors d’après la table que
𝑑

0, 11
= 1, 96 soit 𝑑 = 0, 2156 ≈ 0, 22.

Pour un seuil de risque de 5%, la zone critique est :

𝐼0,05 =] − ∞;−0, 22[∪]0, 22;+∞[

−0, 22 0, 22

Zone critique Zone critique

0

Hypothèse 𝐻0acceptée

𝑑 𝑑

0, 95

0, 0250, 025

4. Règle de décision.
Si la différence des fréquences des deux échantillons est inférieure à −0, 22 ou supérieure à 0, 22, alors l’hypothèse 𝐻0
n’est pas validée. Sinon, l’hypothèse 𝐻0 est validée.

5. Conclusion.
La différence des fréquences de succès des deux échantillons est

23
40

− 15
40

= 0, 2 < 0, 22.
D’après la règle de décision, on en conclut qu’au seuil de risque de 5%, la différence observée entre les deux échantillons
n’est pas significative d’une différence de niveau entre les deux classes. (l’hypothèse 𝐻0 est validée).
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