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1 Périmètres, aires et volumes

1.1 Formules usuelles de calcul de périmètres et d’aires

• Triangle:

– Périmètre : P𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = somme des longueurs

– Aire : A𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
Côté × Hauteur relative à ce côté

2

• Carré:

𝑐

– Périmètre : P𝑐𝑎𝑟𝑟𝑒́ = 4 × 𝑐

– Aire : A𝑐𝑎𝑟𝑟𝑒́ = 𝑐2

• Rectangle:

𝐿

𝑙
– Périmètre : P𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 = 2 × (𝐿 + 𝑙)
– Aire : A𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 = 𝐿 × 𝑙

• Losange:

𝑐 – Périmètre : P𝑙𝑜𝑠𝑎𝑛𝑔𝑒 = 4 × 𝑐

– Aire :A𝑙𝑜𝑠𝑎𝑛𝑔𝑒 =
Grande diagonale × Petite diagonale

2

• Parallélogramme:

𝐿

𝑙

– Périmètre : P𝑝𝑎𝑟𝑎𝑙𝑙𝑒́𝑙𝑜𝑔𝑟𝑎𝑚𝑚𝑒 = 2 × (𝐿 + 𝑙)
– Aire :A𝑝𝑎𝑟𝑎𝑙𝑙𝑒́𝑙𝑜𝑔𝑟𝑎𝑚𝑚𝑒 = Côté×Hauteur relative à ce côté

• Cercle:

𝑟

– Périmètre : P𝑐𝑒𝑟𝑐𝑙𝑒 = 2 × 𝜋 × 𝑟

– Aire : A𝑐𝑒𝑟𝑐𝑙𝑒 = 𝜋 × 𝑟2

• Trapèze:

ℎ

ℓ

𝐿

– Périmètre : P𝑡𝑟𝑎𝑝𝑒̀𝑧𝑒 = somme des longueurs

– Aire : A𝑡𝑟𝑎𝑝𝑒̀𝑧𝑒 =
(ℓ + 𝐿) × ℎ

2
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1.2 Formules usuelles de calcul de volumes

• Cube:

𝑎 – Volume : V𝑐𝑢𝑏𝑒 = 𝑎3

• Pavé droit:

𝑝

ℎ

𝐿
– Volume : V𝑝𝑎𝑣𝑒́ = 𝐿 × ℎ × 𝑝

• Prisme droite:

– Volume : V𝑝𝑟𝑖𝑠𝑚𝑒 = Aire de la base × Hauteur

• Cône:

𝑟

ℎ
– Volume : V𝑐𝑜̂𝑛𝑒 =

𝜋 × 𝑟2 × ℎ

3

• Pyramide:

– Volume : V𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑒 =
Aire de la base × Hauteur

3

• Boule:

𝑟
– Volume : V𝑏𝑜𝑢𝑙𝑒 =

4 × 𝜋 × 𝑟3

3

• Cylindre:

𝑟

ℎ

– Volume : V𝑐𝑦𝑙𝑖𝑛𝑑𝑟𝑒 = 𝜋 × 𝑟2 × ℎ
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Exercice:

1. Calculer le volume d’une sphère de rayon 5cm.
2. Calculer le volume d’une boule de rayon 3cm.
3. Calculer le volume d’un cylindre de rayon 5cm et de hauteur 4cm.

2 Géométrie du triangle

2.1 Outils élémentaires

2.1.1 Théorème de Pythagore

Théorème:

• Sens direct: Dans un triangle 𝐴𝐵𝐶 rectangle en 𝐴 comme suit :

𝐴 𝐵

𝐶

On a 𝐵𝐶2 = 𝐴𝐵2 + 𝐴𝐶2.
• Contraposée: Dans un triangle 𝐴𝐵𝐶 de plus grand côté 𝐵𝐶 comme suit :

𝐴 𝐵

𝐶

Si 𝐵𝐶2 ≠ 𝐴𝐵2 + 𝐴𝐶2 alors le triangle n’est pas rectangle.
• Réciproque: Dans un triangle 𝐴𝐵𝐶 de plus grand côté 𝐵𝐶 comme suit :

𝐴 𝐵

𝐶

Si 𝐵𝐶2 = 𝐴𝐵2 + 𝐴𝐶2 alors le triangle est pas rectangle en 𝐴.
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Exercice:

1. Soit un triangle 𝐴𝐵𝐶 rectangle en 𝐵 tel que 𝐴𝐶 = 5 et 𝐴𝐵 = 2. Calculer 𝐵𝐶.
2. Le triangle 𝐴𝐵𝐶 tel que 𝐴𝐶 = 7, 𝐴𝐵 = 6 et 𝐵𝐶 = 3 est-il rectangle ? Si oui, en quel point ?

2.1.2 Théorème de Thalès

Théorème:

• Sens direct: Les droites (𝐵𝑀) et (𝐶𝑁) sont sécantes en 𝐴. Si (𝑀𝑁)//(𝐵𝐶), alors :

𝐴𝑀

𝐴𝐵
=

𝐴𝑁

𝐴𝐶
=

𝑀𝑁

𝐵𝐶

• Contraposée: Les droites (𝐵𝑀) et (𝐶𝑁) sont sécantes en 𝐴. Si les deux premiers quotients de l’égalité ne sont pas
égaux, alors les droites (𝑀𝑁) et (𝐵𝐶) ne sont pas parallèles.

• Réciproque: Les droites (𝐵𝑀) et (𝐶𝑁) sont sécantes en 𝐴. Si les deux premiers quotients de l’égalité sont égaux,
alors les droites (𝑀𝑁) et (𝐵𝐶) sont parallèles.

𝐴

𝐵

𝐶

𝑀

𝑁

𝐶

𝐵

𝑀

𝑁

𝐴

Exercice:

1. Soient (𝐵𝑀) et (𝐶𝑁) deux droites se coupant en 𝐴. On suppose que les droites (𝑀𝑁) et (𝐵𝐶) sont parallèles et 𝐴𝑀 = 4,
𝐴𝑁 = 3, 𝐴𝐵 = 1 et 𝐵𝐶 = 5. Calculer les longueurs 𝐴𝐶 et 𝑀𝑁 .

2. Soient (𝐵𝑀) et (𝐶𝑁) deux droites se coupant en 𝐴. On suppose que 𝑀𝑁 = 3, 𝐴𝐵 = 12, 𝐵𝐶 = 6, 𝐴𝐵 = 4. Les droites
(𝐵𝑀) et (𝐶𝑁) sont-elles parallèles ?

2.1.3 Trigonométrie

Dans un triangle rectangle, les trois relations trigonométriques relient les cosinus, sinus et tangente d’un angle du triangle, aux
côtés du triangle.

𝐴 𝐵

𝐶

𝜃

• cos(𝜃) = Adjacent
Hypoténuse

=
𝐴𝐵

𝐵𝐶

• sin(𝜃) = Opposé
Hypoténuse

=
𝐴𝐶

𝐵𝐶

• tan(𝜃) = Opposé
Adjacent

=
𝐴𝐶

𝐴𝐵
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Exercice:
Soit un triangle rectangle en 𝐴 tel que 𝐴𝐵 = 4 et 𝐴𝐶 = 3.

1. Déterminer la valeur exacte puis approchée à 10−1° de l’angle 𝜃 = �𝐴𝐵𝐶.
2. En déduire la valeur exacte puis approchée à 10−1 de 𝐵𝐶.

2.2 Outils avancés

2.2.1 Loi des sinus

Théorème:

Soit 𝐴𝐵𝐶 un triangle quelconque. On note :
{

𝑎 = 𝐵𝐶 𝑏 = 𝐶𝐴 𝑐 = 𝐴𝐵

𝐴̂ = �𝐵𝐴𝐶 𝐵̂ = �𝐴𝐵𝐶 𝐶̂ = �𝐵𝐶𝐴

On a alors :
sin( 𝐴̂)

𝑎
=

sin(𝐵̂)
𝑏

=
sin(𝐶̂)

𝑐

Exercice:

1. Soit 𝐴𝐵𝐶 un triangle tel que 𝐴𝐶 = 4, 09, 𝐵𝐶 = 13, 26 et 𝐶̂ = 50°. Calculer 𝐴̂ à 10−2° près.
2. Soit 𝐴𝐵𝐶 un triangle tel que 𝐴𝐵 = 7, 8, 𝐵𝐶 = 6, 9 et 𝐵̂ = 51°. Calculer 𝐶̂ à 10−2° près.

2.2.2 Théorème d’Al-Kashi

Théorème:

Soit 𝐴𝐵𝐶 un triangle quelconque. On note :
{

𝑎 = 𝐵𝐶 𝑏 = 𝐶𝐴 𝑐 = 𝐴𝐵

𝐴̂ = �𝐵𝐴𝐶 𝐵̂ = �𝐴𝐵𝐶 𝐶̂ = �𝐵𝐶𝐴

Alors :

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos( 𝐴̂)
𝑏2 = 𝑐2 + 𝑎2 − 2𝑐𝑎 cos(𝐵̂)
𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(𝐶̂)

Démonstration:
En effet :−−→
𝐵𝐶 =

−−→
𝐵𝐴 + −−→

𝐴𝐶

=⇒ ∥−−→𝐵𝐶∥2 = ∥−−→𝐵𝐴∥2 + 2 <
−−→
𝐵𝐴,

−−→
𝐴𝐶 > +∥−−→𝐴𝐶∥2

=⇒ 𝐵𝐶2 = 𝐴𝐵2 + 𝐶𝐴2 − 2 <
−−→
𝐴𝐵,

−−→
𝐴𝐶 >

=⇒ 𝐵𝐶2 = 𝐴𝐵2 + 𝐶𝐴2 − 2∥−−→𝐴𝐵∥ × ∥−−→𝐴𝐶∥ × cos(−−→𝐴𝐵,−−→𝐴𝐶)
=⇒ 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos( 𝐴̂)
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Exercice:
Soit 𝐴𝐵𝐶 un triangle tel que 𝐴𝐶 = 4, 09, 𝐵𝐶 = 13, 26 et 𝐴̂ = 113, 63°.

1. Montrer que 𝐴𝐵 ≃ 11, 08
2. En déduire la valeur approchée à 10−2° près de la mesure en degrés de l’angle 𝐴̂.

3 Repérage

3.1 Repérage d’un point dans le plan

Dans le plan, muni d’un repère orthonormé (𝑂 ; −→
𝑖 ; −→

𝑗 )
direct, tout point 𝑀 peut être repéré par :

• Les coordonnées cartésiennes (𝑥; 𝑦) avec 𝑥 et 𝑦 tels que
−−−→
𝑂𝑀 = 𝑥

−→
𝑖 + 𝑦

−→
𝑗 .

• Les coordonnées polaires (𝑟; 𝜃) avec 𝑟 = 𝑂𝑀 et
𝜃 = ( −→𝑖 ;

−−−→
𝑂𝑀 ) 𝑂

𝑥

𝑦

−→
𝑖

−→
𝑗

•

𝑟

𝑥

𝑀
𝑦

𝜃

•! Remarque

• En connaissance des coordonnées cartésiennes d’un point (𝑥; 𝑦), on peut déterminer ses coordonnées polaires (𝑟; 𝜃) avec
𝑟 =

√︁
𝑥2 + 𝑦2 et cos(𝜃) = 𝑥

𝑟
et sin(𝜃) = 𝑦

𝑟
.

• En connaissance des coordonnées polaires d’un point (𝑟; 𝜃), on peut déterminer ses coordonnées cartésiennes (𝑥; 𝑦) avec
𝑥 = 𝑟 cos(𝜃) et 𝑦 = 𝑟 sin(𝜃).

Exercice:

1. On considère le point 𝐴(3; 3) dans le plan. Déterminer ses coordonnées polaires (𝑟𝐴; 𝜃𝐴).

2. Déterminer les coordonnées cartésiennes du point 𝐶
(
3;

2𝜋
3

)
.
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3.2 Repérage d’un point dans l’espace

Dans l’espace, muni d’un repère orthonormé (𝑂 ; −→
𝑖 ; −→

𝑗 ;
−→
𝑘 ) direct, tout point 𝑀 peut être repéré par :

• Les coordonnées cartésiennes (𝑥; 𝑦; 𝑧) avec 𝑥, 𝑦 et 𝑧 tels que
−−−→
𝑂𝑀 = 𝑥

−→
𝑖 + 𝑦

−→
𝑗 + 𝑧

−→
𝑘 .

𝑥

𝑦

𝑧

−→
𝑖

−→
𝑗

−→
𝑘

𝑀 (𝑥; 𝑦; 𝑧)

• Les coordonnées cylindriques (𝜌; 𝜃; 𝑧) avec 𝜌 = 𝑂𝑃 et 𝜃 = ( −→𝑖 ;
−−→
𝑂𝑃 ).

𝑥

𝑦

𝑧

𝜌𝜌

𝑃𝑃

𝜌𝜌

𝑧𝑧

𝜃

𝑟

M = (𝜌; 𝜃; 𝑧)

On a alors
{
𝑥 = 𝜌 cos(𝜃)
𝑦 = 𝜌 sin(𝜃)

• Les coordonnées sphériques (𝑟; 𝜃; 𝜙) avec 𝑟 = 𝑂𝑀 , la longitude 𝜃 = ( −→𝑖 ;
−−→
𝑂𝑃 ) ∈ [0; 2𝜋[ et la latitude 𝜙 = ( −−→𝑂𝑃 ;

−−−→
𝑂𝑀 )

et 𝜙 ∈
[
−𝜋

2
;
𝜋

2

]
.

𝑥

𝑦

𝑧

𝑀 (𝑟; 𝜃; 𝜙)

𝑃

𝜙

𝜃

On a alors

𝑥 = 𝜌 sin(𝜃) cos(𝜙)
𝑦 = 𝜌 sin(𝜃) sin(𝜙)
𝑧 = 𝜌 cos(𝜃
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•! Remarque

• En connaissance des coordonnées cartésiennes d’un point (𝑥; 𝑦; 𝑧), on peut déterminer ses coordonnées cylindriques
(𝑟; 𝜃; 𝑧) avec 𝑟 =

√︁
𝑥2 + 𝑦2 et cos(𝜃) = 𝑥

𝑟
et sin(𝜃) = 𝑦

𝑟
.

• En connaissance des coordonnées cartésiennes d’un point (𝑥; 𝑦; 𝑧), on peut déterminer ses coordonnées sphériques (𝑟; 𝜃; 𝜙)
avec 𝑟 =

√︁
𝑥2 + 𝑦2 + 𝑧2 et sin(𝜙) = 𝑧

𝑟
et cos(𝜃) = 𝑥√︁

𝑥2 + 𝑦2
et sin(𝜃) = 𝑦√︁

𝑥2 + 𝑦2
.

Exercice:
On considère le point 𝐴(0; 2

√
3;−2) dans l’espace. Déterminer ses coordonnées sphériques (𝑟𝐴; 𝜃𝐴; 𝜙𝐴).
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