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Formules usuelles de calcul de périmètres et d’aires

• Triangle:

• Périmètre : Ptriangle = somme des
longueurs

• Aire : Atriangle =
Côté× Hauteur relative à ce côté

2

• Carré:

c
• Périmètre : Pcarr é = 4× c

• Aire : Acarr é = c2

• Rectangle:

L

l
• Périmètre : Prectangle = 2× (L+ l)
• Aire : Arectangle = L× l
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Formules usuelles de calcul de périmètres et d’aires

• Losange:

c • Périmètre : Plosange = 4× c
• Aire : Alosange =

Grande diagonale× Petite diagonale

2

• Parallélogramme:

L

l

• Périmètre : Pparall élogramme = 2× (L+ l)
• Aire : Aparall élogramme =

Côté× Hauteur relative à ce côté
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Formules usuelles de calcul de périmètres et d’aires

• Cercle:

r

• Périmètre : Pcercle = 2× π × r
• Aire : Acercle = π × r2

• Trapèze:

h

ℓ

L

• Périmètre :
Ptrapèze = somme des longueurs

• Aire : Atrapèze =
(ℓ+ L)× h

2
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Formules usuelles de calcul de volumes

• Cube:

a • Volume : Vcube = a3

• Pavé droit:

p

h

L
• Volume : Vpavé = L× h × p
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Formules usuelles de calcul de volumes

• Prisme droit:

• Volume :
Vprisme = Aire de la base× Hauteur

• Cône:

r
h

• Volume : Vcône =
π × r2 × h

3

• Pyramide:

• Volume :

Vpyramide =
Aire de la base× Hauteur

3
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Formules usuelles de calcul de volumes

• Boule:

r
• Volume : Vboule =

4× π × r3

3

• Cylindre:

r
h

• Volume : Vcylindre = π × r2 × h
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Formules usuelles de calcul de volume

Exercice:

1. Calculer le volume d’une sphère de rayon 5cm.

2. Calculer le volume d’une boule de rayon 3cm.

3. Calculer le volume d’un cylindre de rayon 5cm et de hauteur 4cm.
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Géométrie du triangle
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Théorème de Pythagore

Théorème:
• Sens direct: Dans un triangle ABC rectangle en A comme suit : On considère un
triangle rectangle en A :

A B

C

On a BC 2 = AB2 + AC 2.
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Théorème de Pythagore

Théorème:
• Contraposée: Dans un triangle ABC de plus grand côté BC comme suit : On
considère un triangle rectangle en A :

A B

C

Si BC 2 ̸= AB2 + AC 2 alors le triangle n’est pas rectangle.

14 / 36



Théorème de Pythagore

Théorème:
• Réciproque: Dans un triangle ABC de plus grand côté BC comme suit : On

considère un triangle rectangle en A :

A B

C

Si BC 2 = AB2 + AC 2 alors le triangle est pas rectangle en A.
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Théorème de Pythagore

Exercice:

1. Soit un triangle ABC rectangle en B tel que AC = 5 et AB = 2. Calculer BC .

2. Le triangle ABC tel que AC = 7, AB = 6 et BC = 3 est-il rectangle ? Si oui, en
quel point ?
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2. Géométrie du triangle
2.1 Outils élémentaires
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Théorème de Thalès

Théorème:

• Sens direct: Les droites (BM) et (CN) sont sécantes en A. Si (MN)//(BC ), alors :

AM

AB
=

AN

AC
=

MN

BC

A

B

C

M
N

C

B

M

N

A
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Théorème de Thalès

Théorème:

• Contraposée: Les droites (BM) et (CN) sont sécantes en A. Si les deux premiers
quotients de l’égalité ne sont pas égaux, alors les droites (MN) et (BC ) ne sont pas
parallèles.

A

B

C

M
N

C

B

M

N

A
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Théorème de Thalès

Théorème

• Réciproque: Les droites (BM) et (CN) sont sécantes en A. Si les deux premiers
quotients de l’égalité sont égaux, alors les droites (MN) et (BC ) sont parallèles.

A

B

C

M
N

C

B

M

N

A
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Théorème de Thalès

Exercice:

1. Soient (BM) et (CN) deux droites se coupant en A. On suppose que les droites
(MN) et (BC ) sont parallèles et AM = 4, AN = 3, AB = 1 et BC = 5. Calculer les
longueurs AC et MN.

2. Soient (BM) et (CN) deux droites se coupant en A. On suppose que MN = 3,
AB = 12, BC = 6, AB = 4. Les droites (BM) et (CN) sont-elles parallèles ?
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Trigonométrie

Dans un triangle rectangle, les trois relations trigonométriques relient les cosinus, sinus et
tangente d’un angle du triangle, aux côtés du triangle.

A B

C

θ

• cos(θ) =
Adjacent

Hypoténuse
=

AB

BC

• sin(θ) =
Opposé

Hypoténuse
=

AC

BC

• tan(θ) =
Opposé

Adjacent
=

AC

AB
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Trigonométrie

Exercice:
Soit un triangle rectangle en A tel que AB = 4 et AC = 3.

1. Déterminer la valeur exacte puis approchée à 10−1° de l’angle θ = ÂBC .

2. En déduire la valeur exacte puis approchée à 10−1 de BC .
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Loi des sinus

Théorème:

Soit ABC un triangle quelconque. On note :

{
a = BC b = CA c = AB

Â = B̂AC B̂ = ÂBC Ĉ = B̂CA

On a alors :
sin(Â)

a
=

sin(B̂)

b
=

sin(Ĉ )

c

Exercice:

1. Soit ABC un triangle tel que AC = 4, 09, BC = 13, 26 et Ĉ = 50°. Calculer Â à
10−2° près.

2. Soit ABC un triangle tel que AB = 7, 8, BC = 6, 9 et B̂ = 51°. Calculer Ĉ à 10−2°
près.
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Théorème d’Al-Kashi

Théorème:

Soit ABC un triangle quelconque. On note :

{
a = BC b = CA c = AB

Â = B̂AC B̂ = ÂBC Ĉ = B̂CA

Alors :


a2 = b2 + c2 − 2bc cos(Â)

b2 = c2 + a2 − 2ca cos(B̂)

c2 = a2 + b2 − 2ab cos(Ĉ )

Exercice:
Soit ABC un triangle tel que AC = 4, 09, BC = 13, 26 et Â = 113, 63°.
1. Montrer que AB ≃ 11, 08

2. En déduire la valeur approchée à 10−2° près de la mesure en degrés de l’angle Â.
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Repérage d’un point dans le plan

Dans le plan, muni d’un repère orthonormé
(O ;

−→
i ;

−→
j ) direct, tout point M peut

être repéré par :

• Les coordonnées cartésiennes (x ; y)

avec x et y tels que
−−→
OM = x

−→
i + y

−→
j .

• Les coordonnées polaires (r ; θ) avec
r = OM et
θ = (

−→
i ;

−−→
OM )

O

x

y

−→
i

−→
j

•

r

x

My

θ
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Repérage d’un point dans le plan

Remarque

• En connaissance des coordonnées cartésiennes d’un point (x ; y), on peut déterminer

ses coordonnées polaires (r ; θ) avec r =
√
x2 + y2 et cos(θ) =

x

r
et sin(θ) =

y

r
.

• En connaissance des coordonnées polaires d’un point (r ; θ), on peut déterminer ses
coordonnées cartésiennes (x ; y) avec x = r cos(θ) et y = r sin(θ).

Exercice:

1. On considère le point A(3; 3) dans le plan. Déterminer ses coordonnées polaires
(rA; θA).

2. Déterminer les coordonnées cartésiennes du point C

(
3;

2π

3

)
.
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Repérage d’un point dans l’espace

Dans l’espace, muni d’un repère orthonormé (O ;
−→
i ;

−→
j ;

−→
k ) direct, tout point M

peut être repéré par :
• Les coordonnées cartésiennes (x ; y ; z) avec x , y et z tels que

−−→
OM = x

−→
i + y

−→
j + z

−→
k .

x

y

z

−→
i

−→
j

−→
k

M(x ; y ; z)
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Repérage d’un point dans l’espace

• Les coordonnées cylindriques (ρ; θ; z) avec ρ = OP et θ = (
−→
i ;

−→
OP ).

x

y

z

ρρ

PP

ρρ

zz

θ

r

M = (ρ; θ; z)

On a alors

{
x = ρ cos(θ)
y = ρ sin(θ)
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Repérage d’un point dans l’espace

• Les coordonnées sphériques (r ; θ;ϕ) avec r = OM, la longitude

θ = (
−→
i ;

−→
OP ) ∈ [0; 2π[ et la latitude ϕ = (

−→
OP ;

−−→
OM ) et ϕ ∈

[
−π

2
;
π

2

]
.

x

y

z

M(r ; θ;ϕ)

P

ϕ

θ

On a alors


x = ρ sin(θ) cos(ϕ)
y = ρ sin(θ) sin(ϕ)
z = ρ cos(θ)
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Repérage d’un point dans l’espace

Remarque

• En connaissance des coordonnées cartésiennes d’un point (x ; y ; z), on peut

déterminer ses coordonnées cylindriques (r ; θ; z) avec r =
√
x2 + y2 et cos(θ) =

x

r
et sin(θ) =

y

r
.

• En connaissance des coordonnées cartésiennes d’un point (x ; y ; z), on peut
déterminer ses coordonnées sphériques (r ; θ;ϕ) avec r =

√
x2 + y2 + z2 et

sin(ϕ) =
z

r
et cos(θ) =

x√
x2 + y2

et sin(θ) =
y√

x2 + y2
.

Exercice:
On considère le point A(0; 2

√
3;−2) dans l’espace. Déterminer ses coordonnées

sphériques (rA; θA;ϕA).
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