Chapitre 2 : Configurations géométriques

Axel Carpentier

Brevet de technicien supérieur :

Enveloppe des batiments, conception et réalisation
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Périmetres aires et volumes

1. Périmetres aires et volumes
1.1 Formules usuelles de calcul de périmeétres et d'aires
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Formules usuelles de calcul de périmeétres et d'aires

® Triangle:
® Périmetre : Ptriangle = somme des
longueurs
® Aire : -Atriangle =
Coté x Hauteur relative a ce coté
2
e Carré:

® Périmeétre : Pears =4 X C

® Aire : Acaprs = 2

® Rectangle:

® Périmetre : Prectangle =2x (L + /)
® Aire : Arectangle =Lx|
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Formules usuelles de calcul de périmeétres et d'aires
® |osange:
Ci:

® Parallélogramme:

Périmétre : Posange =4 X €

Aire : -Alosange =

Grande diagonale x Petite diagonale
2

Périmetre : Ppara//élogramme =2x (L + I)
Aire : -Aparal/élogramme =
Coté x Hauteur relative a ce coté

-
L]
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Formules usuelles de calcul de périmeétres et d'aires

e Cercle:
® Périmetre : Peercle =2 X T X 1
® Aire . Acercle = T X 12
* Trapeze:
¢ ® Périmetre :
Ptrapeze = somme des longueurs
, ({+L)xh
® Aire : -Atrapéze = f
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Périmetres aires et volumes

1. Périmétres aires et volumes

1.2 Formules usuelles de calcul de volumes
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Formules usuelles de calcul de volumes

® Cube:

a ® Volume : Veype = a°

AR
|
|
T
|

e Pavé droit:

b ® Volume : Vpavs =L x hxp
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Formules usuelles de calcul de volumes

® Prisme droit:

® Volume :
JRENN Vprisme = Aire de la base x Hauteur

TXrExh

® Volume : Vigpe = 3

* Pyramide:

® Volume :
Aire de la base x Hauteur
prramide = 3
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Formules usuelles de calcul de volumes

4x7xr’

e Boule:

e Cylindre:

® Volume : Vyjindre = ™ X r2x h

10/36



Formules usuelles de calcul de volume

Exercice:
1. Calculer le volume d'une sphére de rayon 5cm.
2. Calculer le volume d'une boule de rayon 3cm.

3. Calculer le volume d'un cylindre de rayon 5cm et de hauteur 4cm.
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Géométrie du triangle

2. Géométrie du triangle
2.1 Outils élémentaires
Théoreme de Pythagore
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Théoreme de Pythagore

Théoreme:

e Sens direct: Dans un triangle ABC rectangle en A comme suit : On considére un
triangle rectangle en A :

C

>~

A B
On a BC?2 = AB? + ACZ2.
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Théoreme de Pythagore

Théoreme:

e Contraposée: Dans un triangle ABC de plus grand cété BC comme suit : On
considere un triangle rectangle en A :

C

[

A B
Si BC? # AB? + AC? alors le triangle n'est pas rectangle.
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Théoreme de Pythagore

Théoreme:

® Réciproque: Dans un triangle ABC de plus grand c6té BC comme suit : On
considere un triangle rectangle en A :

C

T

A B
Si BC? = AB? + AC? alors le triangle est pas rectangle en A.
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Théoreme de Pythagore

Exercice:
1. Soit un triangle ABC rectangle en B tel que AC =5 et AB = 2. Calculer BC.

2. Le triangle ABC tel que AC =7, AB =6 et BC = 3 est-il rectangle ? Si oui, en
quel point ?
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Géométrie du triangle

2. Géométrie du triangle
2.1  Outils élémentaires

Théoréme de Thaleés
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Théoreme de Thales

Théoréme:
¢ Sens direct: Les droites (BM) et (CN) sont sécantes en A. Si (MN)//(BC), alors :

AM AN M
AB AC BC
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Théoreme de Thales

Théoreme:

e Contraposée: Les droites (BM) et (CN) sont sécantes en A. Si les deux premiers
quotients de |'égalité ne sont pas égaux, alors les droites (MN) et (BC) ne sont pas
paralléles.

C N
A M
B
b
N
A C
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Théoreme de Thales

Théoreme

® Réciproque: Les droites (BM) et (CN) sont sécantes en A. Si les deux premiers
quotients de |'égalité sont égaux, alors les droites (MN) et (BC) sont paralléles.
C N
A M
B
B

N

A C
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Théoreme de Thales

Exercice:

1. Soient (BM) et (CN) deux droites se coupant en A. On suppose que les droites
(MN) et (BC) sont paralleles et AM =4, AN =3, AB =1 et BC =5. Calculer les
longueurs AC et MN.

2. Soient (BM) et (CN) deux droites se coupant en A. On suppose que MN = 3,

AB =12, BC =6, AB = 4. Les droites (BM) et (CN) sont-elles paralleles ?
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Géométrie du triangle

2. Géométrie du triangle
2.1  Outils élémentaires

Trigonométrie
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Trigonométrie

Dans un triangle rectangle, les trois relations trigonométriques relient les cosinus, sinus et
tangente d'un angle du triangle, aux cotés du triangle.

C . _ Adjacent :ﬁ
cos(9) Hypoténuse  BC
o sin(f) = | OPPOE__ AC
0 ~ Hypoténuse  BC
d A
A B o tan(0) = Opposé¢  AC

~ Adjacent  AB
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Trigonométrie

Exercice:
Soit un triangle rectangle en A tel que AB =4 et AC = 3.

1. Déterminer la valeur exacte puis approchée 3 1071° de I'angle § = ABC.

2. En déduire la valeur exacte puis approchée 3 10! de BC.
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Géométrie du triangle

2. Géométrie du triangle

2.2 Outils avancés
Loi des sinus
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Loi des sinus

Théoreme:

it AB iangl I : : N —— A
Soit ABC un triangle quelconque. On note { A 5 _ABC ¢ — Bea

= BAC
On a alors : R N R
sin(A) _ sin(B) _ sin(C)
a b
Exercice:
1. Soit ABC un triangle tel que AC = 4,09, BC = 13,26 et ¢ = 50°. Calculer A 3
1072° pres.
2. Soit ABC un triangle tel que AB =7,8, BC = 6,9 et B = 51°. Calculer € 3 1072°
pres.
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Géométrie du triangle

2. Géométrie du triangle

2.2 Outils avancés

Théoréeme d'Al-Kashi
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Théoreme d’Al-Kashi

Théoreme:

Soit ABC un triangle quelconque. On note : { A — BAC

I T‘I‘
oy}
>) W
a0
o> o
I
>

Q)
oy}
X >
(@

o
I I
V9]

>
o) %

a2 = b?+ c?—2bccos(A)
Alors : { b = %+ a®>—2cacos(B)
2 = a®+ b?>—2abcos(C)

Exercice:
Soit ABC un triangle tel que AC =4,09, BC =13,26 et A=113,63".

1. Montrer que AB ~ 11,08

2. En déduire la valeur approchée 3 1072° prés de la mesure en degrés de I'angle A
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3. Repérage
3.1 Repérage d'un point dans le plan
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Repérage d'un point dans le plan

Dans le plan, muni d'un repére orthonormé P4
(O; i ; j)direct, tout point M peut
étre repéré par :
) M
¢ Les coordonnées cartésiennes (x; Q L > ‘
avecxetytelsqueO—I\>/I:xi+yj. 3
® Les coordonnées polaires (r; () avec  — r l
r= OM et_> J 7 i
! 1 X
0 X i
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Repérage d'un point dans le plan

Remarque

® En connaissance des coordonnées cartésiennes d'un point (x;y), on peut déterminer
. . X .
ses coordonnées polaires (r;6) avec r = \/x2 + y? et cos(f) = = et sin(f) = 4
r r
® En connaissance des coordonnées polaires d'un point (r;#), on peut déterminer ses
coordonnées cartésiennes (x; y) avec x = rcos(f) et y = rsin(6).

Exercice:
1. On considere le point A(3;3) dans le plan. Déterminer ses coordonnées polaires

(rA;GA).

, . , L. . 27
2. Déterminer les coordonnées cartésiennes du point C <3; 3).
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3. Repérage

3.2 Repérage d'un point dans I'espace
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Repérage d'un point dans I'espace

. . , - = . .
Dans I'espace, muni d'un repere orthonormé (O ; i J ; k) direct, tout point M
peut étre repéré par :

® Les coordonnées cartésiennes (x; y; z) avec x, y et z tels que

— S
OM=xi+yj +zk.
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Repérage d'un point dans I'espace

® Les coordonnées cylindriques (p;0;z) avec p = OP et 6 = ( _/) ; O? ).

A
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Repérage d'un point dans I'espace

® Les coordonnées sphériques (r; 6; ¢) avec r = OM, la longitude
9:(7; @)6[0;2#[& la Iatitude¢:(0?; _O—I\_>ﬂ)et¢€ [—gg}

A

X P

{ x = psin(6) cos(p)
On a alors = psin(0)sin(¢)

z= p cos(6)
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Repérage d'un point dans I'espace

Remarque

® En connaissance des coordonnées cartésiennes d'un point (x; y; z), on peut
. : ) o X
déterminer ses coordonnées cylindriques (r;0; z) avec r = y/x2 + y? et cos(f) = —
r

et sin(f) = %

® En connaissance des coordonnées cartésiennes d'un point (x; y; z), on peut
déterminer ses coordonnées sphériques (r; 0; ¢) avec r = y/x2 + y2 + z2 et
. z :
sin(¢) = = et cos(f) = et sin(f) = A
r

X

Exercice:
On considere le point A(0;2+/3; —2) dans I'espace. Déterminer ses coordonnées

sphériques (ra; 0a; da)-
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