Chapitre 4 : Calcul intégral

Axel Carpentier

Brevet de technicien supérieur :

Enveloppe des batiments, conception et réalisation
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1. Primitives
1.1 Définitions
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Définition:

Soit F une fonction définie sur / C R. On dit que F est une primitive de f lorsque F est
dérivable sur I et que F/ = f.

Remarque

Il n'y a pas unicité d'une primitive.

Exemple:

® Une primitive de f : x — 3x? 4+ 2x + 8 est donné par F : x — x> + x> + 8x. En effet
on a bien F/ = f.

X
e Soit f la fonction définie sur R par f(x) = —————, alors la fonction F définie sur
par f(x) = Z =5
R par F(x) = v/x2 + 3 + 7 est une primitive de f.
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Théoréme:

Toute fonction continue sur un intervalle admet des primitives.

Propriété:

Soit F une primitive d'une fonction 7 définies sur /. Les primitives de f sont données par
les fonctions G = F + k, k € R.
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Propriété:

Soit f une fonction admettant des primitives sur /. Soit xg € I et yp € R. |l existe une
unique primitive F telle que F(xp) = yo.

Exercice:

: 5 7 . -
Vérifier que F : x — §x2 +3x—2avec F(1) = 5 est |'unique primitive de
f:x—bx+3.
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1. Primitives

1.2 Calcul de primitives
Primitives de fonctions usuelles
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Primitives de fonctions usuelles

A I'aide du tableau des dérivées des fonctions de références, on en déduit les primitives

suivantes.

Fonction f Primitive F

Constante f(x)=a acRsur /=R F(x)=axsur /=R
n+1
Puissance f(x)_x ,neN*sur [ =R F(x) = X+1 sur [ =R
n
Inverse f(x)=— S I =R* F(x) = In(x) sur | = R*
1

Puissance in- | f(x) = —,n>1sur | =R* F(x) = =1t sur | = R%
verse
Cosinus f(x) = cos(x) sur I =R F(x) =sin(x) sur I =R
Sinus f(x) =sin(x) sur =R F(x) = —cos(x) sur I =R

Exponentielle

f(x) =e sur R

F(x)=¢e“sur | =R
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Opérations sur les primitives

Propriété:

® Soit F et G des primitives respectives de f et g sur . F + G est alors une primitive
de f + g.
® Soit F une primitive de f sur [ et « € R. aF est alors une primitive de af.

Remarque

Contrairement a la dérivation, il n'existe pas de formule permettant de trouver
directement une primitive d'un produit ou d'un quotient de fonctions.
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Opérations sur les primitives

Exemple:

- . . > 3 , x3
Une primitive sur R% de la fonction f : x > x= — — est donnée par F : x — 3~ 3In(x)
X

Exercice:
Déterminer la primitive F de f(x) = x3 + cos(x) avec f(r) = 0.
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Opérations sur les primitives

Soit v : | — J une fonction dérivable de dérivée v/ et v : J — K

Fonction f Primitive F
2
u
f — 4/ F —_
u'u 2
f=uu" S
n+1
f=ue" F=e"
u/
f=— F =1In(u) si J C R%
u
u 1
-~ n>2 F—e e =
a1 = (n—1)u1
f=ue" F=e"
= v’ cos(u) F = sin(u)
f=usin(u F = — cos(u)
f=ux(vVou) F=vou
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Opérations sur les primitives

Exercice:
Déterminer la primitive F de f : x — xe!™ telle que F(1) = 0.
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Intégrale d'une fonction

2. Intégrale d'une fonction
2.1 Définition
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Définition:

On appelle intégrale de f sur [ a; b ] le nombre réel F(b) — F(a) ou F est une primitive
quelconque de f sur /. Il est noté

b
/a F(x) dx = F(b) - F(a) = [F(x)]°

A\

Remarque

La variable x est dite muette, elle n'intervient pas dans le résultat. On peut donc utiliser
n'importe quelle lettre.

b b b

/f(x)dx:/f(t)dt:/f(u)du

a a a
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Exercice:

3
Calculer I'intégrale/ x dx.
2
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Intégrale d'une fonction

2. Intégrale d'une fonction

2.2 Interprétation graphique : calcul d'aire
Aire d'une fonction positive
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Aire d'une fonction positive

Définition:

b
Si f est une fonction positive sur [ a; b ], alors / f(x) dx est égal a I'aire du domaine

a
compris entre la courbe de f, I'axe des abcsisses et les droites d'équations x = aet x = b
exprimée en unité d'aire.
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Aire d'une fonction positive

Exercice:

Calculer I'aire du domaine compris entre la

_ 1
courbe d'équation y = —, I'axe des
X

. T 1
abcsisses, et les droites d’équations x = 5

et x = 4 dans un repére orthonormé
(0, i, j ) dunité graphique 1 cm.

Ry
NN

NN

oy
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Intégrale d'une fonction

2. Intégrale d'une fonction

2.2 Interprétation graphique : calcul d'aire

Aire d'une fonction négative
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Aire d'une fonction négative

Définition:

b
Si f est une fonction négative sur [ a; b ], alors / f(x) dx est égal a I'opposée de I'aire

a
du domaine compris entre la courbe de f, I'axe des abcsisses et les droites d'équations
X = a et x = b exprimée en unité d'aire.
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Aire d'une fonction négative

Exercice:

Calculer I'aire du domaine compris entre la 1 /
3 2

courbe d'équation y = — — —, I'axe des
%7 3 o~z sssrkss777k s 7777

A\ 4

17 - LI/ 77777207777 ///;
équations x =0 B i

777
YT Y Y VY v

abcsisses, et les droites
et x = 9 dans un repére orthonormé s s

7e7
12070222177y
Yrr AT sk s s s s A s,
222
7777

rdr v e .
(O, i, j ) dunité graphique 1 cm. AR

AR A
77700007
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Intégrale d'une fonction

2. Intégrale d'une fonction

2.2 Interprétation graphique : calcul d'aire

Aire d'une fonction quelconque : découpage
d'aire

22 /44



Aire d'une fonction quelconque : découpage d'aire

Pour calculer I'aire d'un domaine définie par une fonction changeant de signe, il faut
découper I'intervalle en plusieurs intervalles sur lesquels la fonction est de signe constant.
Exercice:

Calculer I'aire du domaine compris entre la

courbe d'équation y = x> — x — 2, I'axe des

abcsisses, et les droites d'équations x = —1

et x = 3 dans un repére orthonormé \ %
wrars y ., . ~

(O, i, j )dunité graphique 1 cm. \ /

s ey
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Propriétés de l'intégrale

3. Propriétés de l'intégrale
3.1 Relation de Chasles
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Relation de Chasles

Propriété: Relation de Chasles

Soit f une fonction continue sur un intervalle /| C R. Pour tous a,b,c € / on a :

C C

/ F(x)dx = /b F(x)dx + / f(x)dx

a b
Exercice:
x si xe[-21] p
Soit f définie pour tout x € [-2;4] par ¢ 1 s xe[Ld Calculer /f(x)dx.
X 2
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Propriétés de l'intégrale

3. Propriétés de l'intégrale

3.2 Linéarité
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Linéarité

Proposition:

Soient f et g deux fonctions continues sur un intervalle | C R et o € R.

b

/ F(x) + g(x)dx = /b F(x)dx + /b g(x)dx et /b af(x)dx = o /b F(x)dx

a

Exercice:

f(x) + xdx.

N W

3 3
Soit f une fonction telle que /f(x)dx = 2. Calculer /
1 1
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Propriétés de l'intégrale

3. Propriétés de l'intégrale

3.3 Inégalités
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Inégalités
o
b

Soit f une fonction continue et positive sur [a; b] alors on a /f(x)dx >0

a

Corollaire:

Soit f, g deux fonctions continues sur [a; b]. Si pour tout x € [a; b], f(x) < g(x). Alors

b b
ona /f(x)dx < /g(x)dx.

Exercice:

Démontrer que

©o| oo

8
</ dx <3
— ) 1+x—
0
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Propriétés de l'intégrale

3. Propriétés de l'intégrale

3.4 Valeur moyenne
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Valeur moyenne

Définition:

Soit f une fonction continue sur I'intervalle [a; b] non trivial. On appelle valeur moyenne

de f la quantité :
b

pf = bia/f(x)dx

a

Exercice:
Calculer la valeur moyenne de f : x — (2 — x)(x — 1) sur [-1;0].
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Méthode d'intégration

4. Méthode d'intégration
4.1 Intégration par partie

32/44



Intégration par partie

Propriété:

Soit u, v deux fonctions dérivables de dérivées continues sur [a; b].

b b
[ v G)ae = LwGov (s = [ ' Govt)
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Intégration par partie

Exemple:
1
On désire calculer I'intégrale | = / xe* dx.
0
® On pose u/(x) = e*v(x) = x d’ob u(x) = e*V/(x) = 1.

1 1
°Donc:/xexdx:[xex](1)—/ e dx=(le! —0e) —[eg=e—e+1=1
0 0
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Méthode d'intégration

4. Méthode d'intégration

4.2 Changement de variable
Changement de variable du type x — x + (3
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Changement de variable du type x — x4+ (3

Propriété:

Soit f une fonction dérivable sur un intervalle du type [a+ 3,b+ (3] ou a, b et B € avec

a < b, alors
b b+
/ F(x + ) dx:/ F(t) dt
a a+ps
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Changement de variable du type x — x +

Exemple:
-2

On se propose de calculer l'intégrale | = / (x 4 3)? dx.
-3

® On peut faire le calcul directement en remarquant qu'une primitive de (x + 3)? sur
1
[-3,—2]est §(x+ 3)3.

® On peut également effectuer une translation de maniére a effectuer un calcul plus
simple :

-2 1 1 1 1
l:/ (X+3)2dx:/ tzdt:[x3] ==,
-3 0 3 o 3
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Méthode d'intégration

4. Méthode d'intégration

4.2 Changement de variable

Changement de variable du type x — ax
lorsque a # 0
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Changement de variable du type x — ax lorsque o # 0

Propriété:

Soit f une fonction dérivable sur I'intervalle [ aa , ab ], ot a # 0, alors

/a i fax) dx = é /a jb f(x) dx
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Changement de variable du type x — ax lorsque o # 0

Exemple:

1
On se propose de calculer | = / e dx :
0

1

° /—/lezxdx—l/zetdt—l[et]z—(62—1)
; 2/, 2 1€ = 3 ‘
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Méthode d'intégration

4. Méthode d'intégration

4.2 Changement de variable

Cas général : changement de variable du
type x — ¢(x)
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Cas général : changement de variable du type x — ¢(x)

Propriété:

Soit ¢ une fonction dérivable sur un intervalle | =[ a, b ] dont la dérivée est dérivable
sur /.
Pour toute fonction f définie et continue sur l'intervalle f(/), on a :

©(b) b
/ Fx) dx = / Flo(e)] ¢(2) .
»(a) a
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Cas général : changement de variable du type x — ¢(x)

Exemple:

dx
X+ /X
® On calcule les nouvelles bornes d'intégration :

Pour x €[ 1, 4], onobtientte[1, 2]

4
Calculons I'intégrale / en posant t = /X, ce qui équivaut 3 x = t2 = ¢(t) :
1

® On exprime |'expression a intégrer par rapport a la nouvelle variable : on a
1 1
dx = ———————¢/(t) dt = — x 2t dt.
tc+t

x+/x (1) + V(1)

43/ 44



Cas général : changement de variable du type x — ¢(x)

/4 dx 2 2t dt
® Donc: = —_—
1 X++/x 1 t2+t
=2 — dt
[
=2[In( 1—1—1‘)]1
=2(In3—1n2)

=2In (%)
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