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4. Méthode d’intégration
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Définitions

Définition:

Soit F une fonction définie sur I ⊂ R. On dit que F est une primitive de f lorsque F est
dérivable sur I et que F ′ = f .

Remarque

Il n’y a pas unicité d’une primitive.

Exemple:

• Une primitive de f : x 7→ 3x2 + 2x + 8 est donné par F : x 7→ x3 + x2 + 8x . En effet
on a bien F ′ = f .

• Soit f la fonction définie sur R par f (x) =
x√

x2 + 3
, alors la fonction F définie sur

R par F (x) =
√
x2 + 3 + π est une primitive de f .
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Définitions

Théorème:

Toute fonction continue sur un intervalle admet des primitives.

Propriété:

Soit F une primitive d’une fonction f définies sur I . Les primitives de f sont données par
les fonctions G = F + k, k ∈ R.
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Définitions

Propriété:

Soit f une fonction admettant des primitives sur I . Soit x0 ∈ I et y0 ∈ R. Il existe une
unique primitive F telle que F (x0) = y0.

Exercice:

Vérifier que F : x 7→ 5

2
x2 + 3x − 2 avec F (1) =

7

2
. est l’unique primitive de

f : x 7→ 5x + 3.
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Primitives de fonctions usuelles

A l’aide du tableau des dérivées des fonctions de références, on en déduit les primitives
suivantes.

Fonction f Primitive F

Constante f (x) = a, a ∈ R sur I = R F (x) = ax sur I = R

Puissance f (x) = xn, n ∈ N∗ sur I = R F (x) =
xn+1

n + 1
sur I = R

Inverse f (x) =
1

x
sur I = R∗ F (x) = ln(x) sur I = R∗

+

Puissance in-
verse

f (x) =
1

xn
, n > 1 sur I = R∗ F (x) = − 1

(n − 1)xn−1
sur I = R∗

+

Cosinus f (x) = cos(x) sur I = R F (x) = sin(x) sur I = R
Sinus f (x) = sin(x) sur I = R F (x) = − cos(x) sur I = R
Exponentielle f (x) = ex sur R F (x) = ex sur I = R
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Opérations sur les primitives

Propriété:

• Soit F et G des primitives respectives de f et g sur I . F + G est alors une primitive
de f + g .

• Soit F une primitive de f sur I et α ∈ R. αF est alors une primitive de αf .

Remarque

Contrairement à la dérivation, il n’existe pas de formule permettant de trouver
directement une primitive d’un produit ou d’un quotient de fonctions.
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Opérations sur les primitives

Exemple:

Une primitive sur R∗
+ de la fonction f : x 7→ x2 − 3

x
est donnée par F : x 7→ x3

3
− 3 ln(x)

Exercice:
Déterminer la primitive F de f (x) = x3 + cos(x) avec f (π) = 0.
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Opérations sur les primitives

Soit u : I → J une fonction dérivable de dérivée u′ et v : J 7→ K

Fonction f Primitive F

f = u′u F =
u2

2

f = u′un F =
un+1

n + 1
f = u′eu F = eu

f =
u′

u
F = ln(u) si J ⊂ R∗

+

f =
u′

un
, n ≥ 2 F = − 1

(n − 1)un−1

f = u′eu F = eu

f = u′ cos(u) F = sin(u)

f = u′ sin(u) F = − cos(u)

f = u′ × (v ′ ◦ u) F = v ◦ u
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Opérations sur les primitives

Exercice:
Déterminer la primitive F de f : x 7→ xe1−x2 telle que F (1) = 0.
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4. Méthode d’intégration
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Définition

Définition:

On appelle intégrale de f sur [ a ; b ] le nombre réel F (b)− F (a) où F est une primitive
quelconque de f sur I . Il est noté∫ b

a
f (x) dx = F (b)− F (a) = [F (x)]ba

Remarque

La variable x est dite muette, elle n’intervient pas dans le résultat. On peut donc utiliser
n’importe quelle lettre.

b∫
a

f (x)dx =

b∫
a

f (t)dt =

b∫
a

f (u)du
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Définition

Exercice:

Calculer l’intégrale

∫ 3

2
x dx .
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Aire d’une fonction positive

Définition:

Si f est une fonction positive sur [ a ; b ], alors

∫ b

a
f (x) dx est égal à l’aire du domaine

compris entre la courbe de f , l’axe des abcsisses et les droites d’équations x = a et x = b
exprimée en unité d’aire.

17 / 44



Aire d’une fonction positive

Exercice:

Calculer l’aire du domaine compris entre la

courbe d’équation y =
1

x
, l’axe des

abcsisses, et les droites d’équations x =
1

2
et x = 4 dans un repère orthonormé
(O,

−→
i ,

−→
j ) d’unité graphique 1 cm.

1 2 3 4

1

2

3

Cf
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Aire d’une fonction négative

Définition:

Si f est une fonction négative sur [ a ; b ], alors

∫ b

a
f (x) dx est égal à l’opposée de l’aire

du domaine compris entre la courbe de f , l’axe des abcsisses et les droites d’équations
x = a et x = b exprimée en unité d’aire.
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Aire d’une fonction négative

Exercice:

Calculer l’aire du domaine compris entre la

courbe d’équation y =
x3

27
− x2

3
, l’axe des

abcsisses, et les droites d’équations x = 0
et x = 9 dans un repère orthonormé
(O,

−→
i ,

−→
j ) d’unité graphique 1 cm.

Cf
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Aire d’une fonction quelconque : découpage d’aire

Pour calculer l’aire d’un domaine définie par une fonction changeant de signe, il faut
découper l’intervalle en plusieurs intervalles sur lesquels la fonction est de signe constant.
Exercice:

Calculer l’aire du domaine compris entre la
courbe d’équation y = x2 − x − 2, l’axe des
abcsisses, et les droites d’équations x = −1
et x = 3 dans un repère orthonormé
(O,

−→
i ,

−→
j ) d’unité graphique 1 cm.

Cf
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3.1 Relation de Chasles
3.2 Linéarité
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4.1 Intégration par partie
4.2 Changement de variable

Changement de variable du type x → x + β
Changement de variable du type x → αx
lorsque α ̸= 0
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Relation de Chasles

Propriété: Relation de Chasles

Soit f une fonction continue sur un intervalle I ⊂ R. Pour tous a, b, c ∈ I on a :

c∫
a

f (x)dx =

b∫
a

f (x)dx +

c∫
b

f (x)dx

Exercice:

Soit f définie pour tout x ∈ [−2; 4] par

{
x si x ∈ [−2; 1]
1

x
si x ∈ [1; 4]

. Calculer

4∫
−2

f (x)dx .
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Linéarité

Proposition:

Soient f et g deux fonctions continues sur un intervalle I ⊂ R et α ∈ R.

b∫
a

f (x) + g(x)dx =

b∫
a

f (x)dx +

b∫
a

g(x)dx et

b∫
a

αf (x)dx = α

b∫
a

f (x)dx

Exercice:

Soit f une fonction telle que

3∫
1

f (x)dx = 2. Calculer

3∫
1

3

2
f (x) + xdx .
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Inégalités

Propriété:

Soit f une fonction continue et positive sur [a; b] alors on a

b∫
a

f (x)dx ≥ 0

Corollaire:

Soit f , g deux fonctions continues sur [a; b]. Si pour tout x ∈ [a; b], f (x) ≤ g(x). Alors

on a

b∫
a

f (x)dx ≤
b∫

a

g(x)dx .

Exercice:

Démontrer que
8

9
≤

8∫
0

dx

1 + x
≤ 8.
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4. Méthode d’intégration
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Valeur moyenne

Définition:

Soit f une fonction continue sur l’intervalle [a; b] non trivial. On appelle valeur moyenne
de f la quantité :

µf =
1

b − a

b∫
a

f (x)dx

Exercice:
Calculer la valeur moyenne de f : x 7→ (2− x)(x − 1) sur [−1; 0].
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4.1 Intégration par partie
4.2 Changement de variable

Changement de variable du type x → x + β
Changement de variable du type x → αx
lorsque α ̸= 0
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Intégration par partie

Propriété:

Soit u, v deux fonctions dérivables de dérivées continues sur [a; b].

b∫
a

u(x)v ′(x)dx = [u(x)v(x)]ba −
b∫

a

u′(x)v(x)
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Intégration par partie

Exemple:

On désire calculer l’intégrale I =

∫ 1

0
xex dx .

• On pose u′(x) = exv(x) = x d’où u(x) = exv ′(x) = 1.

• Donc :

∫ 1

0
xex dx = [xex ]10 −

∫ 1

0
ex dx = (1e1 − 0 e0)− [ex ]10 = e − e + 1 = 1.
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Changement de variable du type x → x + β

Propriété:

Soit f une fonction dérivable sur un intervalle du type [a+ β, b + β] où a, b et β ∈ avec
a ≤ b, alors ∫ b

a
f (x + β) dx =

∫ b+β

a+β
f (t) dt
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Changement de variable du type x → x + β

Exemple:

On se propose de calculer l’intégrale I =

∫ −2

−3
(x + 3)2 dx .

• On peut faire le calcul directement en remarquant qu’une primitive de (x + 3)2 sur

[−3 ,−2 ] est
1

3
(x + 3)3.

• On peut également effectuer une translation de manière à effectuer un calcul plus
simple :

I =

∫ −2

−3
(x + 3)2 dx =

∫ 1

0
t2 dt =

[
1

3
x3
]1
0

=
1

3
.
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Changement de variable du type x → αx lorsque α ̸= 0

Propriété:

Soit f une fonction dérivable sur l’intervalle [ αa , αb ], où α ̸= 0, alors∫ b

a
f (αx) dx =

1

α

∫ αb

αa
f (x) dx
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Changement de variable du type x → αx lorsque α ̸= 0

Exemple:

On se propose de calculer I =

∫ 1

0
e2x dx :

• I =

∫ 1

0
e2x dx =

1

2

∫ 2

0
et dt =

1

2

[
et
]2
0
=

1

2

(
e2 − 1

)
.
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Cas général : changement de variable du type x → φ(x)

Propriété:

Soit φ une fonction dérivable sur un intervalle I = [ a , b ] dont la dérivée est dérivable
sur I .
Pour toute fonction f définie et continue sur l’intervalle f (I ), on a :∫ φ(b)

φ(a)
f (x) dx =

∫ b

a
f [φ(t)]φ′(t) dt.
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Cas général : changement de variable du type x → φ(x)

Exemple:

Calculons l’intégrale

∫ 4

1

dx

x +
√
x
en posant t =

√
x , ce qui équivaut à x = t2 = φ(t) :

• On calcule les nouvelles bornes d’intégration :
Pour x ∈ [ 1 , 4 ], on obtient t ∈ [ 1 , 2 ]

• On exprime l’expression à intégrer par rapport à la nouvelle variable : on a
1

x +
√
x
dx =

1

φ(t) +
√
φ(t)

φ′(t) dt =
1

t2 + t
× 2t dt.
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Cas général : changement de variable du type x → φ(x)

• Donc :

∫ 4

1

dx

x +
√
x

=

∫ 2

1

2t dt

t2 + t

= 2

∫ 2

1

1

t + 1
dt

= 2 [ ln(1 + t) ]21
= 2(ln 3− ln 2)
= 2 ln

(
3
2

)
.
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