Chapitre 5 : Calcul vectoriel

Axel Carpentier

Brevet de technicien supérieur :

Enveloppe des batiments, conception et réalisation
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Vecteurs de |'espace

1. Vecteurs de |'espace
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Vecteurs de |'espace

Définition:

On appelle vecteur o un segment orienté caractérisé par:
® Sa direction (orientation de la droite).
® Son sens (direction de la fleche).

* Sa norme (longueur du segment noté || 1]).

Il est également possible de définir un vecteur dans le plan par les mémes critéres.

B

Al A/

B/
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Vecteurs de |'espace

Définition: Somme de vecteurs

On considére deux translations définies par les vecteurs T et V.
Faire succesivement ces deux translations revient a effectuer une seule translation définie
par le vecteur T+ V.

Définition: Multiplication par un réel

Soit un vecteur U et un réel k, multiplier un vecteur par un scalaire revient a effectuer
plusieurs translations successives.

©SiT=0ouk=0alors ki = 0.
°*Si U # T et k > 0 alors la direction est la méme que U et la norme est k|| ||.
S # T et k < 0 alors la direction est I'opposé de T et la norme est —k||||.
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Vecteurs de |'espace

Propriété: Relation de Chasles

Soient A,B et C trois points quelconques de |'espace, on a la relation suivante :
AB + BC = AC

Propriété:

Soient k,k’ deux réels et 77 deux vecteurs quelconques, on a les relation suivante :
k(U +V)=kt +kV

(k+ KU =kd + KT

k(K'T) = (kk'\ T

kﬁzﬁ si et seulement si k =0 ou 7:?

o
A\
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Repere vectoriel et coordonnées

2. Repeére vectoriel et coordonnées
2.1 Repere vectoriel

7/54



Repere vectoriel

Définition: |
. - =
On appelle repére de I'espace la donnée de 3 vecteurs non coplanaires (O, i, j , k).

z
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Repere vectoriel

Remarque

En physique et en mécanique, il est souvent possible de simplifier des situations en se
ramenant a |'étude de vecteurs dans le plan. On représentera le repére comme suit :

Les notations () et Q) signifient respectivement que I'axe est dirigé "vers nous” ou "vers
le mur”.

W
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Repere vectoriel et coordonnées

2. Repeére vectoriel et coordonnées

2.2 Coordonnées dans un repere
Repérage d'un point dans le plan
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Repérage d'un point dans le plan

Dans le plan, muni d'un repére orthonormé P4
(O; i ; j)direct, tout point M peut
étre repéré par :
) M
¢ Les coordonnées cartésiennes (x; Q L > ‘
avecxetytelsqueO—I\>/I:xi+yj. 3
® Les coordonnées polaires (r; () avec  — r l
r= OM et_> J 7 i
! 1 X
0 X i
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Repérage d'un point dans le plan

Remarque

® En connaissance des coordonnées cartésiennes d'un point (x;y), on peut déterminer
. . X .
ses coordonnées polaires (r;6) avec r = \/x2 + y? et cos(f) = = et sin(f) = 4
r r
® En connaissance des coordonnées polaires d'un point (r;#), on peut déterminer ses
coordonnées cartésiennes (x; y) avec x = rcos(f) et y = rsin(6).

Exercice:
1. On considere le point A(3;3) dans le plan. Déterminer ses coordonnées polaires

(rA;GA).

, . , L. . 27
2. Déterminer les coordonnées cartésiennes du point C <3; 3).
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Repere vectoriel et coordonnées

2. Repeére vectoriel et coordonnées

2.2 Coordonnées dans un repere

Repérage d'un point dans I'espace
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Repérage d'un point dans I'espace

. . , - = . .
Dans I'espace, muni d'un repere orthonormé (O ; i J ; k) direct, tout point M
peut étre repéré par :

® Les coordonnées cartésiennes (x; y; z) avec x, y et z tels que

— S
OM=xi+yj +zk.
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Repérage d'un point dans I'espace

® Les coordonnées cylindriques (p;0;z) avec p = OP et 6 = ( _/) ; O? ).

A
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Repérage d'un point dans I'espace

® Les coordonnées sphériques (r; 6; ¢) avec r = OM, la longitude
9:(7; @)6[0;2#[& la Iatitude¢:(0?; _O—I\_>ﬂ)et¢€ [—gg}

A

X P

{ x = psin(6) cos(p)
On a alors = psin(0)sin(¢)

z= p cos(6)
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Repérage d'un point dans I'espace

Remarque

® En connaissance des coordonnées cartésiennes d'un point (x; y; z), on peut
. : ) o X
déterminer ses coordonnées cylindriques (r;0; z) avec r = y/x2 + y? et cos(f) = —
r

et sin(f) = %

® En connaissance des coordonnées cartésiennes d'un point (x; y; z), on peut
déterminer ses coordonnées sphériques (r; 0; ¢) avec r = y/x2 + y2 + z2 et
. z :
sin(¢) = = et cos(f) = et sin(f) = A
r

X

Exercice:
On considere le point A(0;2+/3; —2) dans I'espace. Déterminer ses coordonnées

sphériques (ra; 0a; da)-
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Repere vectoriel et coordonnées

2. Repeére vectoriel et coordonnées

2.2 Coordonnées dans un repere

Coordonnées de vecteurs
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Coordonnées de vecteurs
Définition:

- = —
On se place dans un repere (O, i, j, k).
(

k
Un vecteur o/ a pour coordonnées (x; y; z) dans ce repere signifie que
X
- - - Z .o
U =xi +yj +zk. On écrira alors 7= [y
z

Propriété:
. . 5 —- = 7
Soient A(xa,ya) et B(xg, yg) deux points dans le repere (O, i, j , k).
XB — XA
On a les coordonnées du vecteur /@ = | yg — ya | = point d’arrivée - point de départ
zZg — zp
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Coordonnées de vecteurs
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3. Barycentre
3.1 Barycentre de deux points
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Barycentre de deux points

Définition:
Soit (A, «) et (B, 3) deux points pondérés tels que « + 3 # 0. Il existe un point unique
G tel que :

aaw%@@:ﬁ

Le point G est appelé barucentre des points (A, «) et (B, ).

Remarque
Sionaa= /=0, on dira alors que G est I'isobarycentre des points A et B, ou plus
simplement le milieu de A et B dans le cas de deux points.
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Barycentre de deux points

Propriété:

Le barycentre G de (A, «) et (B, 3) est le point de la droite (AB) tel que :

AG = BBA_é

a+

Soit (0,7, ?,7) une repére de |'espace et les points A(xa; ya; za) et B(xg; yg;zg). On
donne les coordonnées de G = Bar ((A, a); (B; 5)) par :

N _ axa+ fxs ety _aya+Bys ot 2 _ aza+ Pz
¢ a+ ¢ a+ 8 ¢ a+
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3.2 Barycentre de trois points

3. Barycentre

24 /54



Barycentre de trois points

Définition:

Soit (A, a), (B, ) et (C,~) trois points pondérés tels que o + 3 + v # 0. Il existe un

point unique G tel que : . R
aGA + BGB +~GC =0

Le point G est appelé barucentre des points (A, «), (B, 3) et (C,~).

Remarque

Sionaa=p=+%#0, on dira alors que G est l'isobarycentre des points A, B et C.
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Barycentre de trois points

Propriété:

Le barycentre G de (A, «) et (B, 3) est le point de la droite (AB) tel que :

o P g, 1 g

a+ B+ a+ B+

Soit (0,7, ?,7) une repére de |'espace et les points A(xa; ya; za) et B(xg; yg;zg). On
donne les coordonnées de G = Bar ((A, a); (B; 5)) par :

o = 24 + Bxg + Yxc o yo= A + By + Yyc ot 2o 22 + Bzg + vz
wA g atp+y atB+7
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Barycentre de trois points

Remarque

Le centre de gravité ou centre d'inertie d’'un systeme de points matériels est le barycentre
de ces points affectés de leurs masses respectives.
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Opérations vectorielles

4. Opérations vectorielles
4.1 Somme et multiplication par un réel
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Somme et multiplication par un réel

Propriété:
X X - = —
Soient W = [y | et V = [y’ | deux vecteurs du repere (O, /', j, k)
/
zZ zZ

Les coordonnées du vecteur somme sont

x+x'
utv=y+y
z+ 7

.
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Somme et multiplication par un réel
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Somme et multiplication par un réel

lPropriaie:
X

Soient 7 = | y | vecteur du repere (0777) et A\ un réel quelconque.
z
Les coordonnées du vecteur multiplié sont
_ AX
Au Ay
Az
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Somme et multiplication par un réel
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Opérations vectorielles

4. Opérations vectorielles

4.2 Produit scalaire
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Produit scalaire

Définition/Propriété:

Soient 7,7 deux vecteurs de |'espace. On appelle produit scalaire le nombre réel

<,V > (ou U - V) défini par :
o < U,V >=|B| x||V| xcos(F,V)si T £V etV #£0.
° <7,7>:Osi7:6>0u7:6>.

Exemple:
Soit ABC un triangle équilatéral de c6té 2. On a alors :

—
< AB,AC >= ||AB|| x |AC| x cos(AB, AC) = 2 x 2 x cos(5) =2
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Produit scalaire

Propriété:

Soient U, V et W trois vecteurs quelconques et un nombre réel A, on a :
o < U,V >=<7V,U >
e < U VH+W>s=<d,V>+<d,W>
o < U NV >=< AU, V>=A\<TU, V>

Remarque

Pour tout vecteur o/ de 'espace ona: < o/, 0 >= | 7|2
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Produit scalaire

Définition:
Soient 7, V e R2.
U et V sont dits orthogonaux si et seulement si < U, V >=0.

Définition /Propriété:

Soient x,x',y,y',z,Z € Ret © = |y | e¢ V = [ y/ | dans un repére orthonormé

- = =
(O, i,j,k). Onaalors:

< 7,7 >= xx' —i—yy’ + z7/
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Produit scalaire

Exercice:
Calculer le produit scalaire des vecteurs suivants :

@er-() (e

Remarque importante

Le produit scalaire sert principalement en physique et en mécanique a détecter une
orthogonalité entres vecteurs.
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Opérations vectorielles
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Produit vectoriel

Définition/Propriété:

Soient 7, V deux vecteurs de I'espace. On appelle produit vectoriel le vecteur TAV
défini par :
— . o 20
e WAV =10 si U et V sont colinéaires.

® |'unique vecteur w orthogonal a U et V de norme :

W =[Id AV = [T x| V|| x |sin(T, V)
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Produit vectoriel
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Produit vectoriel

Propriété:

Soient U, V et W trois vecteurs quelconques et un nombre réel A, on a :
e (W+VIAW=TAWHTAW
e UNV=-VAT
e DA =(AT =ATAV)
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Produit vectoriel
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Produit vectoriel

4

~.J
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Produit vectoriel

Propriété:

Pour tous vecteurs o et V :

- .,
TAV =0 < U et V sont colinéaires

Définition/Propriété:

/

X X
Soient x,x',y,y,z,Z e Ret = |y | et V = [y | dans un repere orthonormé
z z
(0,7,7,?). On a alors :
yz' —y'z
TNV =|xz-xZ
xy' —x'y
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Produit vectoriel

Théoreme:

1
® |’aire d'un triangle ABC est donnée par EH/ﬁ A RH

® |'aire d'un parallélogramme ABCD est donnée par H/ﬁ A /ﬁH

Remarque importante

Le produit vectoriel sert principalement en physique et en mécanique a détecter une
colinéarité entres vecteurs.
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Opérations vectorielles

4. Opérations vectorielles

4.4 Dérivation vectorielle
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Dérivation vectorielle

Il est possible d’'obtenir des vecteurs dont les coordonnées sont des fonctions (en général
du temps t en physique).
Soit donc un vecteur U de coordonnées (x(t); y(t); z(t)) dans le repere
- =
(o; i, Jj, k ). On définit dont un vecteur dépendant du temps par :

T=x(t)+ 7 +y()] +2(t) K

Définition:

On définit la dérivée vectorielle d’un vecteur U dépendant d’une variable t par :

dd  dx N7 Y7L
i t t k
il (0 + (1)
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Dérivation vectorielle

Propriété:

Soit U et V deux vecteurs quelconques dépendant d'une variable t, on a alors :

d dd  dVv
. (7+7)=%t+dt7
d d
0—(7/\7) d7 7+7Ad7
7

. LT = ( L Y
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Applications

5. Applications

5.1 Projection d'un vecteur
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Projection d'un vecteur

Soit une base ( X.y.Z ) orthonormée et V un vecteur orienté d'un angle
a= (X ; V) par rapport 3 I'horizontale.

A
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Projection d'un vecteur

On a donc les coordonnées du vecteur V :

Vi=V - X =|V| x| X xcos(V, X )=]|V]| x cos(c)
~—~— ——

=1 —a
V=77 =Vl [ xcos( V. 7 )= [ V] x sin(a) W
\:’1-/ -«

N

Ainsi, tout vecteur V. peut se décomposer de facon unique dans une base orthonormée

(7;7;7)telque:

V=(V-X)XH(V- Y)Y+ (V-Z)7Z )
=V, X+V, Yy+W7Z (2)

Par ailleurs, du théoreme de Pythagore, on en déduit que la norme du vecteur V, notée
| V]|, est la grandeur toujours positive :

V] =4/V2+ V24 V2
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Applications

5. Applications

5.2 Changement de base
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Changement de base

Projections nécessaires au passage de (X ; ¥ ; Z vers (0 ; V; W)

o 4 T - X =cos(—0) = cos(h)

Ty =cos (g . 9) — sin()

a | T V% =cos (— (546)) = - sin(0)
V -y =cos(—0) = cos(f)

(3)
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Changement de base

. . . . - .,
Ceci se traduit par le fait que si on a un vecteur V' exprimé dans le base ( vV
par :

sl

V=al+bV+cw

On pourra alors I'exprimer dans la base ( X 7 .7 ) d’apres les résultats de projection :

V = a(cos(8) X +sin(0)Y) + b(—sin(8) X + cos(8) V) + cZ

= (acos(0) — bsin(#)) X + (asin(0) + bcos(0))yY +cZ )

. .. . , -
Par contre, quelle que soit la base choisie pour exprimer les coordonnées de V', sa norme

sera toujours identique : .
|V =+Va%+ b%+ c?
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