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Cours :
Enoncer et démontrer le lemme des noyaux.

Exercice 1 :
Soit E un espace vectoriel sur R ou C. Soit f ∈ L(E) tel
que f2 − f − 2Id = 0.

1. Prouver que f est bijectif et exprimer f−1 en fonc-
tion de f .

2. Prouver que E = ker(f + Id)
⊕

ker(f − 2Id) :

(a) en utilisant le lemme des noyaux ;

(b) sans utiliser le lemme des noyaux.

3. Dans cette question, on suppose que E est de dimen-
sion finie. Prouver que Im(f + Id) = ker(f − 2Id).

Exercice 2 :

Résoudre Mn =

(
2 3
4 6

)
.

Exercice 3 :
Soit E un C-espace vectoriel et f ∈ GL(E).
Montrer que f est diagonalisable si et seulement si f2 est
diagonalisable.
Dans le cas où f n’est pas inversible :
Montrer que f est diagonalisable si et seulement si f2 est
diagonalisable et ker(f) = ker(f2).

Exercice 4 :
Soient A,B ∈ Mn(R). Montrer que χAB = χBA.

Cours :
Soient u ∈ L(E) et F un sous-espace stable par u. Montrer
que si u est trigonalisable alors uF l’est aussi.

Exercice 1 :
Soit n ≥ 2 un entier naturel. Soit E = Kn[X].
On pose : ∀P ∈ E, f(P ) = P − P ′.

1. Démontrer que f est bijectif de deux manières : sans
utiliser la matrice de f puis en l’utilisant.

2. Soit Q ∈ E. Trouver P tel que f(P ) = Q.

3. f est-il diagonalisable ?

Exercice 2 :

La matrice M =

0 1 0
0 0 1
1 −1 1

 est-elle diagonalisable ?

Exercice 3 :
On considère l’équation Z2 = M d’inconnue Z ∈ Mn(C)
avec M ∈ Mn(C) fixée.

1. Calculer le nombre de solutions lorsque toutes les
valeurs propres de M sont simples.

2. Donner un exemple de matrice M où il y a une in-
finité de solutions.

3. Si M est la matrice avec des 1 sur la première di-
agonale supérieure et des 0 partout ailleurs, montrer
que l’équation n’admet aucune solution.

Exercice 4 :
Soit A ∈ Mn(K) une matrice telle que χA est scindé à
racines simples sur K.
On considère C(A) = {M ∈ Mn(K), AM = MA}.

1. Montrer que M ∈ C(A) si et seulement si il existe
P ∈ GLn(K) telle que P−1MP et P−1AP sont
diagonales.

2. Montrer que C(A) = K[A].

Cours :
Enoncer et démontrer une condition nécessaire et suff-
isante de trigonalisation.

Exercice 1 :

On considère la matrice A =

 0 2 −1
−1 3 −1
−1 2 0

.

1. Montrer que A n’admet qu’une seule valeur propre
que l’on déterminera.

2. La matrice A est-elle inversible ? Est-elle diagonal-
isable ?

3. Déterminer, en justifiant, le polynôme minimal de
A.

4. Soit n ∈ N. Déterminer le reste de la division eucli-
dienne de Xn par (X − 1)2 et en déduire la valeur
de An.

Exercice 2 :
Déterminer les éléments propres de la matrice

M =

0 −1 2
0 1 0
1 1 −1


Exercice 3 :

Soit A =



0 0 . . . . . . 0 α0

1 0 . . . . . . 0 α1

0 1
. . .

...
... 0

. . . 0
...

...
... 1 0 αn−2

0 0 . . . 0 1 αn−1


.

On note P = Xn −
n−1∑
k=0

αiX
i.

1. Montrer que χA = P .

2. Montrer que πA = P .

3. Montrer que A est diagonalisable si et seulement si
P est scindé à racines simples.
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Exercice 5 :
Soit E un K-espace vectoriel de dimension finie n ∈ N∗.
Soit (fi)i∈I une famille d’endomorphismes de E qui com-
mutent deux à deux.
Montrer que si les fi sont trigonalisables, alors on peut les
trigonaliser dans une même base.

Exercice 5 :
Soit P un polygone dont les sommets dans le plan com-
plexes ont pour affixes z1, . . . , zn.
On définit par récurrence (Pk)k avec P0 = P et où les
sommets de Pk+1 sont les milieux des arêtes de Pk.
Montrer que la suite (Pk)k converge vers l’isobarycentre
de P .

Exercice 4 :
Dans l’espace Mn(R) on considère l’application s qui a
toute matrice associe la matrice symétrisée par rapport à
la seconde diagonale.

1. Montrer que s est un endomorphisme de Mn(R).

2. Si A = s(A), A est-elle nécessairement diagonalis-
able ?

3. Montrer que χs(A) = χA.

4. L’endomorphisme s est-il diagonalisable ?

Exercice 5 :
Soit E un K-espace vectoriel de dimension finie n et
u1, . . . , un des endomorphismes nilpotents de E qui com-
mutent deux à deux.
Que vaut u1 ◦ u2 ◦ · · · ◦ un ?
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